
libzsf

Tjerk Vreeken, Otto Weiler

May 03, 2023

CONTENTS:

1 Getting Started 3
1.1 Excel workbook . 3
1.2 Python package . 5
1.3 C library . 6
1.4 Fortran interface . 7
1.5 From Source . 7

2 Examples 9
2.1 Excel Examples . 9
2.2 Python Examples . 17

3 Theory 33
3.1 Introduction . 33
3.2 Processes and definitions . 35
3.3 Equations per locking phase . 51
3.4 Cycle-averaged flows and salinities . 57
3.5 Numerical approach cycle-averaged values . 59

4 API 61
4.1 C API . 61
4.2 Python API . 67

5 Support 69

6 Indices and tables 71

Index 73

i

ii

libzsf

This is the documentation for the ZSF, a Deltares tool to calculate salt intrusion through shipping locks. The documen-
tation covers:

• How to get the ZSF running on your computer. For end-users this means downloading either the Excel workbook,
or installing the Python package.

• Making your own calculations, by means of several illustrative examples for both the Excel workbook and Python
package.

• The theory on which the ZSF is based, serving as background information on the inner workings of the libzsf
core.

• An overview of the C and Python API, e.g. to embed the ZSF in other software.

Note: ZSF is an abbreviation for “Zeesluisformulering”, which would translate to Sea Lock Formulation.

CONTENTS: 1

https://www.deltares.nl/

libzsf

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

Typical end-users should use either the Excel wrapper, or the Python pyzsf package, instructions for which are in the
respective sections below. When embedding the ZSF in other software, the easiest way is to download libzsf shared
or static libraries for Linux or Windows, see C library. It is of course also possible to build the Python and C libraries
from source, see From Source.

1.1 Excel workbook

One of the easiest ways of using the ZSF on Windows is to download the Excel workbook from the releases page on
GitLab. This will download a zip file containing a macro-enabled Excel file, and two DLLs (one for 32-bit systems,
and one for 64-bit systems). These DLLs contain computational routines that are called using Excel macros.

When opening the workbook, you need to make sure to enable the macros if so prompted, otherwise it will not be
possible to calculate anything.

To test whether the workbook runs as intended, select cells AH4:BI4 that contain the output of the first row of input,
and delete their contents.

3

https://gitlab.com/deltares/libzsf/-/releases

libzsf

Next, with the cells still selected, press the Run ZSF button. If correct, the output that was there should reappear. For
further instructions, it is best to go through the examples.

1.1.1 Troubleshooting

If nothing happens, there is a chance the macro did not run, because the button is unresponsive. To test whether this
is the case, and check that macros are indeed able to run, go to File -> Options -> Customize Ribbon and enable the
Developer mode.

With that done, select the Developer tab on the ribbon, and run the macro manually (still with the cells on row 4
selected).

4 Chapter 1. Getting Started

libzsf

1.2 Python package

The Python package of the ZSF is called pyzsf. Although not required, it is recommended to install it in a virtual
environment. See the official Python tutorial for more information on how to set up and activate a virtual environment.

pyzsf, including its dependencies, can be installed using the pip package manager:

Install pyzsf using the pip package manager
pip install pyzsf

1.2. Python package 5

https://docs.python.org/3/tutorial/venv.html
https://pip.pypa.io/

libzsf

Note: Pip version 20.0 or higher is required to install pyzsf, or it will fail to find a matching distribution for your
platform. If you have an older version, please run python -m pip install -U pip before installing pyzsf.

To test whether it works, import pyzsf and call its zsf_calc_steady() function.

1.3 C library

Static and dynamic libraries for both Windows and Linux are available on the releases page on GitLab. The Linux
libraries are built using the manylinux2010 docker image, and should be therefore be compatible with most versions of
Linux.

6 Chapter 1. Getting Started

https://gitlab.com/deltares/libzsf/-/releases
https://www.python.org/dev/peps/pep-0571/

libzsf

1.4 Fortran interface

A wrapper is provided to easily call the static and dynamic libraries from Fortran. See the releases page on GitLab, or
download the zsf.f90 interface file directly from the git tree.

1.5 From Source

The latest libzsf source can be downloaded using Git:

Get libzsf source
git clone https://gitlab.com/deltares/libzsf.git

Note that cmake is needed to build libzsf, and a working Python installation is required to build the pyzsf wrapper. For
more detailed build instructions, it is probably easiest to look at the build:windows and build:linux sections in
the .gitlab.yml file in the root of the source tree. These instructions are always up to date, and give a concise and clear
overview of the steps required to build from source.

1.4. Fortran interface 7

https://gitlab.com/deltares/libzsf/-/releases
https://gitlab.com/deltares/libzsf/-/tree/master/wrappers/fortran
https://git-scm.com/

libzsf

8 Chapter 1. Getting Started

CHAPTER

TWO

EXAMPLES

2.1 Excel Examples

2.1.1 Steady-state calculation

Overview

The purpose of this example is to understand the basic steps to calculate the salt transports through a shipping lock in
steady state operation. The scenario is the following: A single lock connects a canal to the sea, and the lock is busy
during the day but quiet during the night. We want to know how much salt comes in on average, and figure out ways to
reduce the salt intrusion by means of mitigating measures like bubble screens.

9

libzsf

Properties of the lock and its operation

The physical dimensions of our single shipping lock are:

• length: 148 m

• width: 14 m

• bottom: -4.4 mNAP (Dutch Ordnance Datum)

For the boundary conditions we will assume that the sea level is the same as the canal level, with both being equal to
0.0 mNAP. The salinity on the salt side is significantly higher than on the canal side.

• salinities: 5 kg/m3 on the canal side close to the lock, and 25 kg/m3 on the sea side

• head: 0.0 mNAP on both sides

• temperature: 15.0 °C on both sides

The last step is to derive basic parameters from the locking information.

• During daytime, the lock operates at a pace of 1.25 cycles per hour (= 30 cycles per 24 hours). During the night,
the lock operates at a pace of 10 cycles per 24 hours.

• It takes 5 minutes to open or close the doors on either side, and also 5 minutes to level.

• There are the same number of ships going from the sea to the canal, and vice-versa.

• The ships going to and from the canal also have an equal displacement of 1000 m3.

In the first calculation, the lock does not have any sills or bubble screens, nor is there any flushing. These are of course
measures that we will take a look at later in this example to reduce the amount of salt intrusion.

See also:

For an overview of these parameters, and more in-depth discussion on them, see Input and Processes and definitions.

Salt load without measures

The next step is to enter all these physical and operational characteristics in the Excel workbook. As we are assuming
constant operation and boundary conditions, we can use the Steady tab. We need a total of two rows, one for daytime
operation and one for nighttime. Entering the values above into the Excel sheet should result in a something like shown
in the image below. Note that some field are not used (yet); they will be discussed below in detail.

The next step is to select (at least) one cell on each of the rows you want to calculate, and press the Run ZSF button in
the top-left. The output columns in the sheet should then take on values similar to those shown in the image below.

10 Chapter 2. Examples

libzsf

From these results we can see that there is a salt load of almost 37 kg/s during daytime, and 19 kg/s during nighttime.

Comparing salt intrusion measures

The maximum allowable salt load has been determined to be 12 kg/s, so the salt load during daytime and nighttime
are currently not acceptable. The ZSF can help compare various salt intrusion measures that can be taken to reduce
the salt load to acceptable levels. For this particular lock sills are not a feasible option, but bubble screens and flushing
discharges could be.

A typical maximally efficient bubble screen can reduce the pace of the lock exchange to about 25%. If we fill in 0.25
at both Lake and Sea, the salt load during daytime is reduced to about 10 kg/s. However, the salt load at nighttime
is reduced much less. With a value of about 13.5 kg/s it is now even higher than that during the daytime, even though
there are fewer ships passing through the lock.

Bubble screens are only effective if the doors are closed well before the (reduced) lock is reduced. With only 2 to 3
locking cycles during the night, the doors are open for more than an hour at a time, see the output columns Time Door
Lake Open and Time Door Sea Open.

2.1. Excel Examples 11

libzsf

If we can tell the lock operator to close the doors right after ships have finished sailing out, we can reduce the salt
intrusion significantly. To reduce these door-open durations, we can use Calibration Factor. If we know that the doors
are open about 20 minutes at a time during the night, we can fill in a value of approximately 0.3 here to reduce the
current duration of about an hour with. Recalculating with this will give a salt load of about 4 kg/s during the night,
which is acceptable.

2.1.2 Phase-wise calculation

Overview

Note: This example focuses on performing a phase-wise calculation of salt-intrusion through a shipping lock. It
assumes basic exposure to the Excel interface. If you are a first-time user of the ZSF, see the Steady-state calculation
example.

The purpose of this example is to understand the basic steps to perform a phase-wise calculation of the salt intrusion
through a shipping lock. The scenario is similar to that of the Steady-state calculation example, in that there is a single
lock connecting a canal to the sea. The differences with the steady state example are:

• there is a head difference now, with the sea at 2 mNAP

12 Chapter 2. Examples

libzsf

• we are only going to calculate one full locking cycle during the daytime operation

Different phases and routines

There are a few phases the lock can go through, each having associated salt transports. See Section 3.3 in the theory for
more explanation on what each phase entails. The term routines refers to the actual functions that are called, and their
naming mostly corresponds to that of the phases. The only major difference is that there is an initialization routine 0
to set the starting state, but no such phase as there are no transports yet.

See also:

For an overview of phases and how the transports are determined, see Equations per locking phase.

Initializing the lock

First we need to initialize the lock with a certain salinity and head. The dimensions of the lock are equal to that of
the Steady-state calculation example. You can therefore copy the row of input parameters to the first calculation row
in the Phase worksheet. There are a few parameters that are no longer needed, because we will set them explicitly
ourselves. These input parameters that needed for steady state calculation, but not needed for phase-wise calculation,
can be spotted by the lack of shading in the second row. Instead, we will have to enter values in the columns shaded
blue. We set the head of the sea to 2.0 mNAP, and set the initial head and salinity inside the lock chamber to 0.0 mNAP
and 15 kg/m3 respectively.

Next, we make sure that the routine column is set to 0. Then, just like with the Steady-state calculation example, we
can select one or more cells on this row and press Run ZSF. If all goes well, the output columns will then show the
following results

2.1. Excel Examples 13

libzsf

Note: The lock is always initialized empty, i.e., without a ship in it.

Leveling to the lake side

The next step is to level the lock to the lake side. The lock was already initialized to the head of the lake side, so we
expect to see no transports in this phase. Copy the input of the first row to the second row., and set

• the leveling time to 300 seconds

• the routine to 1

Now press the Run ZSF button. Note that if you had any remaining values in the Initialize State columns, these values
will be cleared as they are not needed. Check that the output columns have zero transport of both water and salt.

Opening the door to the lake side

With the lock leveled to the lake side, the doors can now be opened.

Important: Make sure that the leveling routines (1 and 3) have matching heads for the boundary conditions as
the subsequent door-open routines (2 and 4 respectively). If this is not the case, an exception is raised stating this
requirement.

Once again, copy the lock dimensions and other inputs to a new row below the two already existing ones. Remove the
leveling time, and set the following parameters:

• volume ship down (lake to sea) to 1000.0 m3

• door open time on the lake side to 840 seconds

• the routine to 2

14 Chapter 2. Examples

libzsf

Press the Run ZSF button, and if all is correct the outputs should be similar to the following image:

The last columns show the state of the lock, and now indicate that there is a ship in the lock chamber.

Leveling to the sea side

The next step is to level the lock to the sea side. The instructions are equal to those of leveling to the lake side, except
that you should set the routine to 3 instead of 1. Press the Run ZSF button, and inspect the output.

Opening the door to the sea side

The last step is to open the doors to the sea side, and let the ship sail out and a new ship sail in. Copy the last row to a
new one, and set:

• volume ship up (sea to lake) to 800.0 m3

• door open time on the sea side to 840 seconds

• the routine to 4

The inputs should look as follows:

2.1. Excel Examples 15

libzsf

After pressing Run ZSF, the output should like like:

Note that the volume of ship inside the lock chamber has changed from 1000 m3 to 800.0 m3.

Calculating more lockages

One can repeat the above process, again adding a row for leveling to the lake side next. If the water levels and salinities
on the lake and/or sea side are changing, you can change these parameters accordingly. Typically, the water level is
set to the average water level during the door-open phase, with the preceding leveling phase also leveling to said water
level. It quickly becomes rather tedious and error-prone to calculate many lockages this way using Excel, especially
if a lot of preprocessing is involved to get the parameters per locking phase and the source data is not set in stone.
Depending on your experience with Excel and Python, it might then be easier to use the Python wrapper to do these
types of calculations, see the Python Phase-wise calculation example.

16 Chapter 2. Examples

libzsf

2.2 Python Examples

2.2.1 Steady-state calculation

Overview

The purpose of this example is to understand the basic steps to calculate the salt transports through a shipping lock in
a steady state operation. The scenario is the following: A single lock connects a canal to the sea, and the lock is busy
during the day but quiet during the night. We want to know how much salt comes in on average, and figure out ways to
reduce the salt intrusion by means of mitigating measures like bubble screens.

Properties of the lock and its operation

The physical dimensions of our single shipping lock are:

• length: 148 m

• width: 14 m

• bottom: -4.4 mNAP (Dutch Ordnance Datum)

For the boundary conditions we will assume that the sea level is the same as the canal level, with both being equal to
0.0 mNAP. The salinity on the salt side is significantly higher than on the canal side.

• salinities: 5 kg/m3 on the canal side close to the lock, and 25 kg/m3 on the sea side

• head: 0.0 mNAP on both sides

• temperature: 15.0 °C on both sides

The last step is to derive basic parameters from the locking information.

• During daytime, the lock operates at a pace of 1.25 cycles per hour (= 30 cycles per 24 hours). During the night,
the lock operates at a pace of 10 cycles per 24 hours.

2.2. Python Examples 17

libzsf

• It takes 5 minutes to open or close the doors on either side, and also 5 minutes to level.

• There are the same number of ships going from the sea to the canal, and vice-versa.

• The ships going to and from the canal also have an equal displacement of 1000 m3.

In the first calculation, the lock does not have any sills or bubble screens, nor is there any flushing. These are of course
measures that we will take a look at later in this example to reduce the amount of salt intrusion.

See also:

For an overview of these parameters, and more in-depth discussion on them, see Input and Processes and definitions.

Salt load without measures

The first step in your Python file or Jupyter Notebook is to import pyzsf:

1 import pyzsf

The next step is to enter all these physical and operational characteristics. For readability, it can make sense to group
the parameters, as can be seen in the code:

4 lock_parameters = {
5 "lock_length": 148.0,
6 "lock_width": 14.0,
7 "lock_bottom": -4.4,
8 }
9

10 boundary_conditions = {
11 "head_lake": 0.0,
12 "salinity_lake": 5.0,
13 "temperature_lake": 15.0,
14 "head_sea": 0.0,
15 "salinity_sea": 25.0,
16 "temperature_sea": 15.0,
17 }
18

19 operational_parameters = {
20 "num_cycles": 30,
21 "door_time_to_open": 300.0,
22 "leveling_time": 300.0,
23 "ship_volume_sea_to_lake": 1000.0,
24 "ship_volume_lake_to_sea": 1000.0,
25 }

We can merge all dictionaries into one set for the daytime, and one set for the nighttime parameters. This makes passing
the arguments later on a bit shorter and easier to understand.

27 daytime_parameters = {**lock_parameters, **boundary_conditions, **operational_parameters}
28 nighttime_parameters = {**daytime_parameters, "num_cycles": 10}

The next step is to actually calculate the salt flux to the lake during day- and nighttime. As we are assuming constant
operation and boundary conditions, we can use the pyzsf.zsf_calc_steady() function. We log this salt flux to the
console.

18 Chapter 2. Examples

libzsf

30 # Calculate the transports without protection
31 print("No measures:")
32 results = pyzsf.zsf_calc_steady(**daytime_parameters)
33 print("Day = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))
34

35 results = pyzsf.zsf_calc_steady(**nighttime_parameters)
36 print("Night = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))

The console output of these lines is as follows:

No measures:
Day = 36.8 kg/s
Night = 18.8 kg/s

Comparing salt intrusion measures

The maximum allowable salt load has been determined to be 12 kg/s, so the salt load during daytime and nighttime
are currently not acceptable. The ZSF can help compare various salt intrusion measures that can be taken to reduce
the salt load to acceptable levels. For this particular lock sills are not a feasible option, but bubble screens and flushing
discharges could be.

A typical maximally efficient bubble screen can reduce the pace of the lock exchange to about 25%. We define a new
dictionary where we set the density current factor to this percentage on both sides of the lock.

38 # Transports with a bubble screen
39 bubble_screen_parameters = {
40 "density_current_factor_lake": 0.25,
41 "density_current_factor_sea": 0.25,
42 }

We then call pyzsf again for both day- and nighttime operation, and pass these additional bubble screen parameters:

44 print("\nBubble screen (25%):")
45 results = pyzsf.zsf_calc_steady(**daytime_parameters, **bubble_screen_parameters)
46 print("Day = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))
47

48 results = pyzsf.zsf_calc_steady(**nighttime_parameters, **bubble_screen_parameters)
49 print("Night = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))

The console output of these lines is as follows:

Bubble screen (25%):
Day = 9.8 kg/s
Night = 13.4 kg/s

The salt load during daytime is reduced to about 10 kg/s with these bubble screens. However, the salt load at nighttime
is reduced by much less. With a value of about 13.5 kg/s it is now even higher than that during the daytime, even though
there are fewer ships passing through the lock.

Bubble screens are only effective if the doors are closed well before the (reduced) lock is reduced. With only 2 to
3 locking cycles during the night, the doors are open for more than an hour at a time. We can get these calculated
door open times by also requesting the auxiliary results. This can be done by setting the first positional argument to
pyzsf.zsf_calc_steady() to True.

2.2. Python Examples 19

libzsf

51 # Auxiliary results, showing how long the doors are open
52 print("\nDoor open times at night:")
53 results = pyzsf.zsf_calc_steady(True, **nighttime_parameters, **bubble_screen_parameters)
54 for k, v in results.items():
55 if k.startswith("t_open"):
56 print(f"{k} = {v}")

The console output of these lines is as follows:

Door open times at night:
t_open = 3720.0
t_open_lake = 3720.0
t_open_sea = 3720.0

If we can tell the lock operator to close the doors right after ships have finished sailing out, we can reduce the salt intru-
sion significantly. To reduce these door-open durations, we can use the zsf_param_t.calibration_coefficient.
If we know that the doors are open about 20 minutes at a time during the night, we can fill in a value of approximately
0.3 here to reduce the current duration of about an hour with.

58 # Transports at night with bubble screen and closing the doors sooner
59 print("\nBubble screen (25%), and close doors sooner:")
60 results = pyzsf.zsf_calc_steady(
61 **nighttime_parameters, **bubble_screen_parameters, calibration_coefficient=0.3
62)
63 print("Night = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))

This gives us a salt load of about 4 kg/s during the night, which is acceptable:

Bubble screen (25%), and close doors sooner:
Night = 4.1 kg/s

The whole script

All together, the whole example script is as follows:

1 import pyzsf
2

3

4 lock_parameters = {
5 "lock_length": 148.0,
6 "lock_width": 14.0,
7 "lock_bottom": -4.4,
8 }
9

10 boundary_conditions = {
11 "head_lake": 0.0,
12 "salinity_lake": 5.0,
13 "temperature_lake": 15.0,
14 "head_sea": 0.0,
15 "salinity_sea": 25.0,
16 "temperature_sea": 15.0,
17 }

(continues on next page)

20 Chapter 2. Examples

libzsf

(continued from previous page)

18

19 operational_parameters = {
20 "num_cycles": 30,
21 "door_time_to_open": 300.0,
22 "leveling_time": 300.0,
23 "ship_volume_sea_to_lake": 1000.0,
24 "ship_volume_lake_to_sea": 1000.0,
25 }
26

27 daytime_parameters = {**lock_parameters, **boundary_conditions, **operational_parameters}
28 nighttime_parameters = {**daytime_parameters, "num_cycles": 10}
29

30 # Calculate the transports without protection
31 print("No measures:")
32 results = pyzsf.zsf_calc_steady(**daytime_parameters)
33 print("Day = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))
34

35 results = pyzsf.zsf_calc_steady(**nighttime_parameters)
36 print("Night = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))
37

38 # Transports with a bubble screen
39 bubble_screen_parameters = {
40 "density_current_factor_lake": 0.25,
41 "density_current_factor_sea": 0.25,
42 }
43

44 print("\nBubble screen (25%):")
45 results = pyzsf.zsf_calc_steady(**daytime_parameters, **bubble_screen_parameters)
46 print("Day = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))
47

48 results = pyzsf.zsf_calc_steady(**nighttime_parameters, **bubble_screen_parameters)
49 print("Night = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))
50

51 # Auxiliary results, showing how long the doors are open
52 print("\nDoor open times at night:")
53 results = pyzsf.zsf_calc_steady(True, **nighttime_parameters, **bubble_screen_parameters)
54 for k, v in results.items():
55 if k.startswith("t_open"):
56 print(f"{k} = {v}")
57

58 # Transports at night with bubble screen and closing the doors sooner
59 print("\nBubble screen (25%), and close doors sooner:")
60 results = pyzsf.zsf_calc_steady(
61 **nighttime_parameters, **bubble_screen_parameters, calibration_coefficient=0.3
62)
63 print("Night = {:.1f} kg/s".format(-1 * results["salt_load_lake"]))

2.2. Python Examples 21

libzsf

2.2.2 Phase-wise calculation

Overview

Note: This example focuses on performing a phase-wise calculation of salt-intrusion through a shipping lock. It
assumes basic exposure to the Python interface. If you are a first-time user of the ZSF, see the Steady-state calculation
example.

The purpose of this example is to understand the basic steps to perform a phase-wise calculation of the salt intrusion
through a shipping lock. The scenario is similar to that of the Steady-state calculation example, in that there is a single
lock connecting a canal to the sea. The differences with the steady state example are:

• there is a head difference now, with the sea at 2 mNAP

• we are only going to calculate one full locking cycle during the daytime operation

Initializing the lock

First we need to initialize the lock with a certain salinity and head. The dimensions of the lock are equal to that of the
Steady-state calculation example. The boundary conditions are also equal, except that the head_sea is 2 mNAP. The
operational parameters differ more, as the two steady-state operation parameters num_cycles, leveling_time and
door_time_to_open are removed.

1 import pprint
2

3 import pyzsf
4

5

6 lock_parameters = {
7 "lock_length": 148.0,
8 "lock_width": 14.0,

(continues on next page)

22 Chapter 2. Examples

libzsf

(continued from previous page)

9 "lock_bottom": -4.4,
10 }
11

12 boundary_conditions = {
13 "head_lake": 0.0,
14 "salinity_lake": 5.0,
15 "temperature_lake": 15.0,
16 "head_sea": 2.0,
17 "salinity_sea": 25.0,
18 "temperature_sea": 15.0,
19 }
20

21 operational_parameters = {
22 "ship_volume_sea_to_lake": 1000.0,
23 "ship_volume_lake_to_sea": 1000.0,
24 }

The next step is to initialize a pyzsf.ZSFUnsteady instance, with an initial salinity of 15 kg/m3 and head of 0.0 mNAP.
We also directly pass all other parameters to the constructor. These updated parameters are stored in the instance, and
we do not need to specify them again when calling the method to level or open the doors (contrary to the Excel interface),
unless we want to change the value of one of them of course.

28 print("State after initialization")
29 pprint.pprint(z.state)

The state of the lock after initialization is logged to the console with the pprint.pprint statements:

State after initialization
{'head_lock': 0.0,
'salinity_lock': 15.0,
'saltmass_lock': 136752.00000000003,
'volume_ship_in_lock': 0.0}

Note: The lock is always initialized empty, i.e., without a ship in it.

Leveling to the lake side

The next step is to level the lock to the lake side, which is Phase 1. See Section 3.3 in the theory for more explanation
on the phases in a locking cycle. The lock was already initialized to the head of the lake side, so we expect to see
no transports in this phase. We call pyzsf.ZSFUnsteady.zsf_step_phase_1, which needs the leveling time as an
argument.

33 results = z.step_phase_1(300.0)

The results of this method call, and the resulting state of the lock are printed to the console:

Phase 1:

Transports:
{'discharge_from_lake': 0.0,

(continues on next page)

2.2. Python Examples 23

libzsf

(continued from previous page)

'discharge_from_sea': 0.0,
'discharge_to_lake': 0.0,
'discharge_to_sea': 0.0,
'mass_transport_lake': 0.0,
'mass_transport_sea': 0.0,
'salinity_to_lake': 15.0,
'salinity_to_sea': 15.0,
'volume_from_lake': 0.0,
'volume_from_sea': 0.0,
'volume_to_lake': 0.0,
'volume_to_sea': 0.0}
State:
{'head_lock': 0.0,
'salinity_lock': 15.000000000000002,
'saltmass_lock': 136752.00000000003,
'volume_ship_in_lock': 0.0}

Note that the console output shows zero transport of both water and salt. Also note that state of the lock after this phase
is equal (barring rounding errors) to the state after initialization.

Opening the door to the lake side

With the lock leveled to the lake side, the doors can now be opened.

Important: Make sure that the leveling methods (step_phase_1 and step_phase_3) have matching heads for the
boundary conditions as the subsequent door-open methods (step_phase_2 and step_phase_4 respectively). If this is
not the case, an exception is raised stating this requirement.

To open the doors, we call pyzsf.ZSFUnsteady.zsf_step_phase_2:

• volume ship down (lake to sea) is the default of 1000.0 m3. We therefore do not need to pass this argument.

• door open time on the lake side to 840 seconds.

40 results = z.step_phase_2(840.0)

The transports are logged to the console. Note that there are no transports to the sea in this phase, as we would expect
without any flushing discharge.

Leveling to the sea side

The next step is to level the lock to the sea side. The instructions are equal to those of leveling to the lake side, except
that we call pyzsf.ZSFUnsteady.zsf_step_phase_3.

47 results = z.step_phase_3(300.0)

24 Chapter 2. Examples

libzsf

Opening the door to the sea side

The last step is to open the doors to the sea side, and let the ship sail out and a new ship sail in. This time we will also
change the displacement of the ship that enters:

• override the volume ship up (sea to lake) to 800.0 m3

• door open time on the sea side to 840 seconds

54 results = z.step_phase_4(840.0, ship_volume_sea_to_lake=800.0)

Check the state output that is logged to the console after this phase:

{'head_lock': 2.0,
'salinity_lock': 22.612960757739405,
'saltmass_lock': 281775.5814100392,
'volume_ship_in_lock': 800.0}

Note that the volume of ship inside the lock chamber has changed from 1000 m3 to 800.0 m3.

Calculating more lockages

One can repeat the above process, again adding a method call to pyzsf.ZSFUnsteady.zsf_step_phase_1 for lev-
eling to the lake side next. If the water levels and salinities on the lake and/or sea side are changing, you can change
these parameters accordingly for each method call. Typically, the water level is set to the average water level during
the door-open phase, with the preceding leveling phase also leveling to said water level. It quickly becomes rather
tedious and error-prone to calculate many lockages this way, and it is better to write a loop over some input data. For
an example of this, see Phase-wise with multiple lockages example.

The whole script

All together, the whole example script is as follows:

1 import pprint
2

3 import pyzsf
4

5

6 lock_parameters = {
7 "lock_length": 148.0,
8 "lock_width": 14.0,
9 "lock_bottom": -4.4,

10 }
11

12 boundary_conditions = {
13 "head_lake": 0.0,
14 "salinity_lake": 5.0,
15 "temperature_lake": 15.0,
16 "head_sea": 2.0,
17 "salinity_sea": 25.0,
18 "temperature_sea": 15.0,
19 }
20

(continues on next page)

2.2. Python Examples 25

libzsf

(continued from previous page)

21 operational_parameters = {
22 "ship_volume_sea_to_lake": 1000.0,
23 "ship_volume_lake_to_sea": 1000.0,
24 }
25

26 z = pyzsf.ZSFUnsteady(15.0, 0.0, **lock_parameters, **boundary_conditions, **operational_
→˓parameters)

27

28 print("State after initialization")
29 pprint.pprint(z.state)
30

31 print("\nPhase 1:\n" + "*" * 8)
32

33 results = z.step_phase_1(300.0)
34 print("Transports:")
35 pprint.pprint(results)
36 print("State:")
37 pprint.pprint(z.state)
38

39 print("\nPhase 2:\n" + "*" * 8)
40 results = z.step_phase_2(840.0)
41 print("Transports:")
42 pprint.pprint(results)
43 print("State:")
44 pprint.pprint(z.state)
45

46 print("\nPhase 3:\n" + "*" * 8)
47 results = z.step_phase_3(300.0)
48 print("Transports:")
49 pprint.pprint(results)
50 print("State:")
51 pprint.pprint(z.state)
52

53 print("\nPhase 4:\n" + "*" * 8)
54 results = z.step_phase_4(840.0, ship_volume_sea_to_lake=800.0)
55 print("Transports:")
56 pprint.pprint(results)
57 print("State:")
58 pprint.pprint(z.state)

26 Chapter 2. Examples

libzsf

2.2.3 Phase-wise with multiple lockages

Overview

Note: This example focuses on performing a phase-wise calculation of many lockages based on an input file. It
assumes basic exposure to the Python interface and phase-wise calculation. If you are a first-time user of the ZSF, see
the Steady-state calculation and Phase-wise calculation examples.

The purpose of this example is to understand the basic steps to perform a phase-wise calculation of many lockages.
The goal is to determine the average transports of water and salt over a 60-day period.

Initializing the lock

When initializing the lock with pyzsf.ZSFUnsteady we pass all parameters that stay constant throughout the 60-day
period. This includes the parameters for salt intrusion measures like the bubble screens. Note that the head on the lake
side is constant, but that the head on the sea side varies. Furthermore, the salinity on both sides of the lock varies over
time as well.

8 lock_parameters = {
9 "lock_length": 300.0,

10 "lock_width": 25.0,
11 "lock_bottom": -7.0,
12 }
13

14 constant_boundary_conditions = {
15 "head_lake": 0.0,
16 "temperature_lake": 15.0,
17 "temperature_sea": 15.0,
18 }
19

20 mitigation_parameters = {
21 "density_current_factor_lake": 0.25,
22 "density_current_factor_sea": 0.25,
23 "distance_door_bubble_screen_lake": 10.0,
24 "distance_door_bubble_screen_sea": 10.0,
25 "flushing_discharge_high_tide": 0.0,
26 "flushing_discharge_low_tide": 0.0,
27 "sill_height_lake": 0.5,
28 }

(continues on next page)

2.2. Python Examples 27

libzsf

(continued from previous page)

29

30 # Initialize the lock
31 z = pyzsf.ZSFUnsteady(

Reading the input data

The lockages over the 60-day period are defined in a CSV-file:

Table 1: Lockages
time head_sea rou-

tine
salin-
ity_lake

salin-
ity_sea

ship_volume_lake_to_seaship_volume_sea_to_laket_flushingt_levelt_open_laket_open_sea

2960.00.037601569933333333 0.855455024285714328.529520582857142 300.0
3380.00.037601569933333334 0.855455024285714328.529520582857142 1884.2 420.0
3920.00.1811971121 0.897903093142857128.558444978571426 240.0
4280.00.1811971122 0.897903093142857128.5584449785714262482.0 1020.0
5420.00.74484631 3 1.02360534728.62057304 340.0

We read this CSV file using pandas, and convert it to a list of parameter dictionaries:

33)
34

35 # Read the lockages from a file

Stepping through all lockages

Just like in the Phase-wise calculation example we step through all phases in the locking cycle. We do this by iterating
over all locking-phase entries defined in the input CSV file. Depending on the respective phase, we pass either the
leveling time, the door-open duration, or the duration of flushing (with the doors closed).

We store the results of every individual locking phase in a list called all_results, to be aggregated later on in the
script:

37 lockages = list(df_lockages.to_dict("records"))
38

39 # Go through all lockages
40 all_results = []
41

42 for parameters in lockages:
43 routine = int(parameters.pop("routine"))
44 t_open_lake = parameters.pop("t_open_lake")
45 t_open_sea = parameters.pop("t_open_sea")
46 t_level = parameters.pop("t_level")
47 t_flushing = parameters.pop("t_flushing")
48

49 parameters["ship_volume_sea_to_lake"] = 0.0
50 parameters["ship_volume_lake_to_sea"] = 0.0
51

52 if routine == 1:
53 assert t_level > 0
54 results = z.step_phase_1(t_level, **parameters)

(continues on next page)

28 Chapter 2. Examples

https://gitlab.com/deltares/libzsf/-/tree/master/examples/python/lockages.csv
https://pandas.pydata.org/

libzsf

(continued from previous page)

55 elif routine == 2:
56 results = z.step_phase_2(t_open_lake, **parameters)
57 elif routine == 3:
58 assert t_level > 0
59 results = z.step_phase_3(t_level, **parameters)
60 elif routine == 4:
61 results = z.step_phase_4(t_open_sea, **parameters)
62 elif routine in {-2, -4}:
63 results = z.step_flush_doors_closed(t_flushing, **parameters)
64 else:
65 raise Exception(f"Unknown routine '{routine}'")

Aggregating output

For many cases we would only be interested in what happens on the lake side, e.g. the average salt flux in kg/s over a
certain period of time. For illustrative purposes we however aggregate all outputs. For volumes and mass transports
this means summing them. For discharges and salt fluxes, this means averaging them.

67 all_results.append(results)
68

69 # Aggregate results
70 duration = 60 * 24 * 3600 # 60 days
71

72 overall_results = {}
73 overall_mass_to_sea = 0.0
74 overall_mass_to_lake = 0.0
75

76 for results in all_results:
77 for k, v in results.items():
78 if k.startswith(("volume_", "mass_")):
79 overall_results[k] = overall_results.get(k, 0.0) + v
80

81 overall_mass_to_sea += results["volume_to_sea"] * results["salinity_to_sea"]
82 overall_mass_to_lake += results["volume_to_lake"] * results["salinity_to_lake"]
83

84 overall_results["salinity_to_sea"] = overall_mass_to_sea / overall_results["volume_to_sea
→˓"]

85 overall_results["salinity_to_lake"] = overall_mass_to_lake / overall_results["volume_to_
→˓lake"]

86

87 overall_discharges = {}
88 for k, v in overall_results.items():
89 if k.startswith("volume_"):
90 overall_discharges[f"discharge_{k[7:]}"] = v / duration
91 overall_results.update(overall_discharges)

Finally, the average fluxes are logged to the console

93 assert overall_results.keys() == all_results[0].keys()
94

95 # Log to console

2.2. Python Examples 29

libzsf

The output should show something like:

Overall results (60 day aggregates and averages):
{'discharge_from_lake': 2.626938120554457,
'discharge_from_sea': 2.9855208663562096,
'discharge_to_lake': 2.7409909136666557,
'discharge_to_sea': 2.872713264556223,
'mass_transport_lake': -215507325.24071646,
'mass_transport_sea': -215288300.05404428,
'salinity_to_lake': 16.334431315958305,
'salinity_to_sea': 13.297877648040927,
'volume_from_lake': 13618047.216954306,
'volume_from_sea': 15476940.17119059,
'volume_to_lake': 14209296.896447944,
'volume_to_sea': 14892145.563459458}

The whole script

All together, the whole example script is as follows:

1 import pprint
2

3 import pandas as pd
4

5 import pyzsf
6

7

8 lock_parameters = {
9 "lock_length": 300.0,

10 "lock_width": 25.0,
11 "lock_bottom": -7.0,
12 }
13

14 constant_boundary_conditions = {
15 "head_lake": 0.0,
16 "temperature_lake": 15.0,
17 "temperature_sea": 15.0,
18 }
19

20 mitigation_parameters = {
21 "density_current_factor_lake": 0.25,
22 "density_current_factor_sea": 0.25,
23 "distance_door_bubble_screen_lake": 10.0,
24 "distance_door_bubble_screen_sea": 10.0,
25 "flushing_discharge_high_tide": 0.0,
26 "flushing_discharge_low_tide": 0.0,
27 "sill_height_lake": 0.5,
28 }
29

30 # Initialize the lock
31 z = pyzsf.ZSFUnsteady(
32 15.0, 0.0, **lock_parameters, **constant_boundary_conditions, **mitigation_parameters

(continues on next page)

30 Chapter 2. Examples

libzsf

(continued from previous page)

33)
34

35 # Read the lockages from a file
36 df_lockages = pd.read_csv("lockages.csv", index_col=0)
37 lockages = list(df_lockages.to_dict("records"))
38

39 # Go through all lockages
40 all_results = []
41

42 for parameters in lockages:
43 routine = int(parameters.pop("routine"))
44 t_open_lake = parameters.pop("t_open_lake")
45 t_open_sea = parameters.pop("t_open_sea")
46 t_level = parameters.pop("t_level")
47 t_flushing = parameters.pop("t_flushing")
48

49 parameters["ship_volume_sea_to_lake"] = 0.0
50 parameters["ship_volume_lake_to_sea"] = 0.0
51

52 if routine == 1:
53 assert t_level > 0
54 results = z.step_phase_1(t_level, **parameters)
55 elif routine == 2:
56 results = z.step_phase_2(t_open_lake, **parameters)
57 elif routine == 3:
58 assert t_level > 0
59 results = z.step_phase_3(t_level, **parameters)
60 elif routine == 4:
61 results = z.step_phase_4(t_open_sea, **parameters)
62 elif routine in {-2, -4}:
63 results = z.step_flush_doors_closed(t_flushing, **parameters)
64 else:
65 raise Exception(f"Unknown routine '{routine}'")
66

67 all_results.append(results)
68

69 # Aggregate results
70 duration = 60 * 24 * 3600 # 60 days
71

72 overall_results = {}
73 overall_mass_to_sea = 0.0
74 overall_mass_to_lake = 0.0
75

76 for results in all_results:
77 for k, v in results.items():
78 if k.startswith(("volume_", "mass_")):
79 overall_results[k] = overall_results.get(k, 0.0) + v
80

81 overall_mass_to_sea += results["volume_to_sea"] * results["salinity_to_sea"]
82 overall_mass_to_lake += results["volume_to_lake"] * results["salinity_to_lake"]
83

84 overall_results["salinity_to_sea"] = overall_mass_to_sea / overall_results["volume_to_sea

(continues on next page)

2.2. Python Examples 31

libzsf

(continued from previous page)

→˓"]
85 overall_results["salinity_to_lake"] = overall_mass_to_lake / overall_results["volume_to_

→˓lake"]
86

87 overall_discharges = {}
88 for k, v in overall_results.items():
89 if k.startswith("volume_"):
90 overall_discharges[f"discharge_{k[7:]}"] = v / duration
91 overall_results.update(overall_discharges)
92

93 assert overall_results.keys() == all_results[0].keys()
94

95 # Log to console
96 print("Overall results (60 day aggregates and averages):")
97 pprint.pprint(overall_results)

32 Chapter 2. Examples

CHAPTER

THREE

THEORY

3.1 Introduction

3.1.1 Motivation and goals

The Directorate-General for Public Works and Water Management (Dutch: Rijkswaterstaat), but also other private and
public parties around the world in charge of water reserves, would like to calculate the influence of the salt intrusion
through shipping locks on the salinity of the fresh water at a reasonable distance from the lock. For example, to calculate
the salinity of the water that farmers use to irrigate their land. Such calculations should be able to consider a long period
of time and area, as the spread and build-up of salt can take months or years. It is also necessary to be able to consider
multiple economical- and climate scenarios, along with the possible measures both on the shipping lock itself and those
elsewhere in the system. For this reason, there is a need to have a fast and compact formulation of the processes on
the lock, such that this formulation can be used inside a far-field model that models the spread. Such a formulation
can then also be used to calculate the transport of water and salt through a shipping lock in a stand-alone fashion (i.e.
without coupling it to- or incorporating it in a far-field model).

3.1.2 Approach

The chosen approach for the ZSF is to set up the equations that describe the flows into and out of the lock, for all phases
of the locking cycle. Concretely, this means the volumes due leveling, the lock exchange process, ship displacement,
and flushing discharges through the lock chamber. Note that this phase-wise approach is opposed to a fixed time-step
approach.

In case registrations of the door movements are available, one can calculate per locking phase what the transports of
water and salt are in that particular phase over both lock heads (salt side and fresh side). That way one can calculate
based on historical registrations what the salt transport has been.

When no registrations are available, a cycle-averaged transport of salt and water can be calculated based on a few key
parameters of the lock operation. These parameters are then translated into a repeating pattern of locking phases, i.e.
when the door is open and how long leveling is supposed to take. Then, the transports of water and salt per phase can
be added up, leading to cycle-averaged values of the transports. These averaged values can then serve as in a forcing
in a far-field model.

An overview of the concept of the ZSF model is given in figure below. A more detailed discussion of all the physical
quantities involved will be explained later. What is visible is that the boundary conditions of the model are the tem-
perature, salinity and water level on each side of the lock. These boundary conditions, together with the geometry and
operation of the lock, determine the discharge that go into the lock with the governing salinity, and out of the lock with
a salinity in the lock chamber that follows from the locking process. The flows into the lock chamber are a withdrawal
from the approach harbor on each side of the lock, 𝑄−

𝐹 and 𝑄−
𝑆 , and the flows going out of the lock are discharges to

the approach harbors, 𝑄+
𝐹 and 𝑄+

𝑆 .

33

libzsf

Fig. 1: Schematic overview of the model concept: discharges going in and out on both sides of the lock, with their
corresponding salinities.

34 Chapter 3. Theory

libzsf

3.2 Processes and definitions

To set up the equations, it is necessary to define the various physical quantities. An understanding of these physical
quantities should be based on an understanding of the relevant processes. Therefore, we first (briefly) introduce these
processes, followed by explaining the quantities that will appear in the equations later on.

3.2.1 Processes in the locking cycle

Leveling

The locking of ships is in essence about overcoming a difference in water level. By letting a ship moore temporarily in
a lock chamber, and by changing the water level in this lock chamber, the water level difference can be bridged. This
process is called leveling. Raising the water level is done by letting water from the high side (‘filling’), and lowering
the water level is done by letting out water to the low side (‘emptying’).

Lock exchange

Where there is a difference in salinity - and with that a difference in density - between both sides of the lock, a current will
start to develop when the doors on either end are opened. This current is called a density current, and the phenomenon
of this current exchanging the salt water in the lock chamber with fresh water (or vice versa) is called ‘lock exchange’.
The less dense fresh water will start to float on top of the denser salt water, and move to the salt side. After reflection
of the density current on the closed doors, the process continuous until just about the entire lock volume has been
exchanged or until the doors are closed.

Locking operation

The locking operation concerns the opening and closing of doors on one side, leveling, the opening and closing of the
doors on the other side, and leveling back again. When the doors open, ships will leave the lock chamber, before new
ones going the opposite direction enter the lock chamber and the doors close again. The discharge through the lock due
to leveling is determined by the surface area of the lock chamber, the water level difference, and the number of locking
cycles per unit of time. For the lock exchange process, it is the time that the doors are open that matters. The time that
the doors are open determines whether the density current partially or fully exchanges the water in the lock chamber.

Shipping

The presence of ships in the locking cycle influences the lock exchange in two ways:

1. When a ship enters a lock chamber, water is pushed out of said lock chamber. The amount of water that leaves
the lock is equal to the water displacement of the ship. Conversely, when ships exit the lock chamber, water will
flow from the approach harbor into the lock chamber to fill the ‘hole’ left by the ships.

2. The upwards leveling of a lock chamber means that water comes in from the high side. In case of a lock between
salt- and fresh water, it is likely that the water that enters has a different salinity than the water inside the lock
chamber. At the end of leveling the lock chamber will therefore have a new average salinity. When determining
this average salinity we need to take into account that, when ships are present in the lock, there is less water
inside the lock chamber.

The presence of ships inside the lock chamber does not have influence on the amount of water that is needed for leveling.

In the formulation of transports through the lock it is not about the individual but about the total water displacement of
the ships per cycle. This value can differ for both direction, upstream and downstream. Do note that these two values do
not have to be equal to each other. For example, when through a certain lock more cargo is imported than exported, this

3.2. Processes and definitions 35

libzsf

will be represented accordingly in the water displacements in both directions. With that, also a net discharge through
the lock can arise.

Measures to prevent salt intrusion

To reduce the salt intrusion through shipping locks, a number of measures are available.

Bubble screens

Bubble screen in the lock heads reduce the velocity of the density current while the doors are open. It can therefore
be an effective measure to reduce the salt intrusion, but the reduction also depends on limiting the amount of time the
doors are open.

Flushing through the lock chamber

If the water level on the salt side is lower than that on the fresh side, the salt intrusion can be reduced by flushing the
lock chamber with fresh water. When the lock opens to the fresh side, the water inside the lock chamber will have
a lower salinity. This causes the density current velocity to drop, and also reduces the maximum amount of salt that
can be transported due to lock exchange. When flushing with doors open, the flushing discharge with also reduce the
velocity of the density current by means of superposition of velocities. Note that the same principle of flushing the lock
can be applied when the water level on the salt side is higher, but pumps will be needed to realize the desired flushing
discharge.

3.2.2 Conventions

For the positive direction of flows the dominant flow direction of the river or delta is chosen, i.e. downstream, towards
the sea, from fresh to salt. This is in line with the convention of other software and model schematizations. Due to this
choice, salt intrusion is a transport of salt in the negative direction.

This convention is also used in the figures in this documentation: a positive discharge means flow from left to right,
with the upstream side on the left and the sea/salt side on the right.

Subscripts to denote the lock chamber, the fresh side, and the salt side are respectively 𝐿, 𝐹 , and 𝑆.

3.2.3 Phases of the locking cycle

In the figure below the different phases of the locking cycle are displayed and named. Because the direction of the
leveling depends on whether the water level on the salt or fresh side is higher, there is a high water and low water state.

The water levels (ℎ) on each side of the lock are defined as ℎ𝐹 for the water level on the fresh side, and ℎ𝑆 for the water
level on the salt side. From this the definition of the high and low water state follows:

• when ℎ𝑆ℎ𝐹 the state is LW

• when ℎ𝑆 ≥ ℎ𝐹 the state is HW

In this figure the positive direction is shown for the discharge (𝑄), but the same convention holds for the transported
volume (𝑉) and transported salt mass (𝑀).

36 Chapter 3. Theory

libzsf

Fig. 2: The phases of the locking cycle

3.2. Processes and definitions 37

libzsf

3.2.4 Physical quantities

The transports through a lock are determined by four categories of physical quantities:

• The boundary conditions on either side of the lock

• The geometry of the lock

• The operation of the lock

• The dimensions of the ship(s)

The calculated transports are expressed in terms of a transported salt mass per unit of time (or locking cycle), determined
by the transported volumes and their corresponding salinities.

Boundary conditions

The boundary conditions on either side of the lock, the fresh side and the salt side, consist of a water level with a
corresponding salinity or density. In stand-alone operation, these boundary conditions are prescribed by the user.
When part of a larger (far-field) model, said model will prescribe the boundary conditions to the ZSF.

ℎ: The water levels on each side of the lock in [mDAT]

Suffix: 𝐿, 𝐹 , and 𝑆 for the lock, fresh side and salt side.

𝑆: Salinity in [𝑘𝑔/𝑚3]

Suffix: 𝐿, 𝐹 , and 𝑆 for the lock, fresh side and salt side.

Second suffix for 𝑆𝐿:

𝐹 : direction after closing the door on the fresh side

𝑆: direction after closing the door on the salt side

Third suffix for 𝑆𝐿 or 𝑆𝑆 :

𝐿𝑒𝑣: after leveling, that follows on closing the door on the other side

𝜌: The average density of the water on each side of the lock head in [𝑘𝑔/𝑚3]

These values are generally available from a far-field model. In stand-alone usage, the density is calculated
from the salinity using the UNESCO-formulation.

𝜌𝐹𝑆 : The average density of the water on the fresh and salt side in [𝑘𝑔/𝑚3]

These values are generally available from a far-field model. In stand-alone usage, the density is calculated
from the salinity using the UNESCO-formulation.

Geometry

The general geometric parameters of the lock are:

𝐿𝐿: length of the lock chamber in [𝑚]

𝑊𝐿: width of the lock chamber in [𝑚]

𝑧𝐿: bottom depth of the lock chamber in [mDAT]

From these follow:

𝐻: water level over the bottom of the lock chamber or lock head in [𝑚].

38 Chapter 3. Theory

libzsf

𝐻𝐹 = ℎ𝐹 − 𝑧𝐿

𝐻𝑆 = ℎ𝑆 − 𝑧𝐿
(3.1)

𝑉 : the volume of the lock chamber in [𝑚3] at a certain water level

𝑉𝐿,𝐹 = 𝐿𝐿𝑊𝐿𝐻𝐹

𝑉𝐿,𝑆 = 𝐿𝐿𝑊𝐿𝐻𝑆

(3.2)

Difference in the lock bottom layout inside and outside the lock chamber, combined with the possible presence of
sills in the lock heads, will influence the lock exchange. For the correct calculation thereof, additional parameters are
necessary. That is, it is necessary to define _effective_ values of length, depth and volume. This is discussed in more
detail in TODO_REFCHAP7.

If the lock bottom is equal throughout and there are no sills in the lock heads, it holds that:

𝐿𝐿,𝑒𝑓𝑓 = 𝐿𝐿 (3.3)

and

𝐻𝐹,𝑒𝑓𝑓 = 𝐻𝐹

𝐻𝑆,𝑒𝑓𝑓 = 𝐻𝑆

(3.4)

and

𝑉𝐿,𝐹,𝑒𝑓𝑓 = 𝑉𝐿,𝐹

𝑉𝐿,𝑆,𝑒𝑓𝑓 = 𝑉𝐿,𝑆

(3.5)

Operation

𝑇𝑖𝑛−𝑢𝑠𝑒: hours per day that the lock is operational [hour]

This is a constant with a value of 24 hours.

𝑁𝑐𝑦𝑐𝑙𝑒𝑠: locking frequency [-]

The number of locking cycles (back and forth) per day.

𝑇𝑑𝑜𝑜𝑟: time needed to move (open or close) the doors [min]

𝑇𝑙𝑒𝑣𝑒𝑙: the average time needed to level the lock [min]

Research has shown that a variation in locking frequency over the day or week influences the salt intrusion significantly.
To take this effect into account, two additional parameters are introduced:

𝑐𝑑𝑜𝑡: a calibration coefficient as a factor on the door-open time [-]

Default value is 1 (conservative); the range is [0, 1]

𝐶𝐹/𝐴𝑣𝑔: a symmetry coefficient indicating whether the doors are open equally long on both sides [-]

Default is 1 (equally long). Range is 0 (door on fresh side effectively never open) to 2 (door on
salt side effectively never open).

From these parameters follow:

3.2. Processes and definitions 39

libzsf

𝑇𝑐𝑦𝑐𝑙𝑒: the average time for a complete locking cycle [s]

𝑇𝑐𝑦𝑐𝑙𝑒 =
𝑇𝑖𝑛−𝑢𝑠𝑒 · 60 · 60

𝑁𝑐𝑦𝑐𝑙𝑒𝑠
(3.6)

𝑇𝑜𝑝𝑒𝑛,𝑎𝑣𝑔: the average door-open time [s]

𝑇𝑜𝑝𝑒𝑛,𝑎𝑣𝑔 =
1

2
𝑇𝑐𝑦𝑐𝑙𝑒 −

(︂
𝑇𝑙𝑒𝑣𝑒𝑙 +

2

2
𝑇𝑑𝑜𝑜𝑟

)︂
· 60 (3.7)

Do note that for the calculation of the door-open time we subtract twice half the time it takes to
open- or close the door. That means that effectively we assume that the lock-exchange process
starts and ends when the doors are opened/closed halfway.

𝑇𝑜𝑝𝑒𝑛: the representative door-open time [s]

𝑇𝑜𝑝𝑒𝑛 = 𝑐𝑑𝑜𝑡𝑇𝑜𝑝𝑒𝑛,𝑎𝑣𝑔 (3.8)

𝑇𝑜𝑝𝑒𝑛,𝐹 and 𝑇𝑜𝑝𝑒𝑛,𝑆 : the representative door-open times on the fresh and salt side [s]

𝑇𝑜𝑝𝑒𝑛,𝐹 = 𝑐𝐹/𝐴𝑣𝑔𝑇𝑜𝑝𝑒𝑛

𝑇𝑜𝑝𝑒𝑛,𝑆 =
(︀
2 − 𝑐𝐹/𝐴𝑣𝑔

)︀
𝑇𝑜𝑝𝑒𝑛

(3.9)

Transports

𝑀 The amount of transported salt [kg] per locking phase (over a certain head)

first suffix: 𝐹 , and 𝑆 for the lock head on the fresh side or salt side.

second suffix: 𝐿𝑇1 - 𝐿𝑇4: phase of the locking cycle, simplified to just 1-4 if the formula is
equal for both tidal phases.

𝑉 a volume of water with salt that is moved between lock and approach harbor [𝑚3]

suffixes:

𝐿𝑒𝑣: due to leveling

followed by either LT or HT, depending on the direction of the head difference
over the lock

𝑈 : due to lock exchange

followed by 𝐹 , and 𝑆 for fresh side or salt side

𝑆ℎ𝑖𝑝: the total water displacement of the ships

Up: For ships moving in upstream direction, i.e. from salt to fresh side

Down: For ships moving in downstream direction, i.e. from fresh to salt side

𝐹𝑙𝑢𝑠ℎ: Due to a flushing discharge through the locking chamber

followed by either LT or HT, depending on the direction of the head difference
over the lock

40 Chapter 3. Theory

libzsf

3.2.5 Calculation of the transported volumes

Leveling volume

The leveling volume plays a.o. a role in filling the lock chamber. Note that when filling the lock chamber, the salinity
in the lock chamber changes. When emptying (i.e. leveling to the side with lower level), the salinity in the lock does
not change.

Because the expression for filling and emptying are different, the formulas are separated. In addition, it is convenient
to have different identifiers for both tidal phases.

𝐿𝑇 : 𝑉𝑙𝑒𝑣𝑒𝑙,𝐿𝑇 = 𝐿𝐿𝑊𝐿 (ℎ𝐹 − ℎ𝑆) , 𝑉𝑙𝑒𝑣𝑒𝑙,𝐻𝑇 = 0 (3.10)

𝐻𝑇 : 𝑉𝑙𝑒𝑣𝑒𝑙,𝐿𝑇 = 0, 𝑉𝑙𝑒𝑣𝑒𝑙,𝐻𝑇 = 𝐿𝐿𝑊𝐿 (ℎ𝑆 − ℎ𝐹) (3.11)

Lock exchange

The lock exchange is often the most import process for lock intrusion through shipping locks. The process of lock ex-
change in time can be approximated with a hyperbolic tangent function. With that, the exchange volume 𝑈(= 𝑉𝑈/𝑉𝐾),
slowly goes to 1 when the doors stay open for a long period of time.

𝑉𝑈 = 𝑉𝐿𝑈 = 𝑉𝐿 tanh

(︂
𝑇𝑜𝑝𝑒𝑛

𝑇𝐿𝐸

)︂
(3.12)

The door-open time 𝑇𝑜𝑝𝑒𝑛 is in this expression compared to the (theoretical) time it takes for the density current to
travel twice the length of the lock chamber.

The (initial) velocity of the density current 𝑐𝑖 is determined by the relative density difference ∆𝜌/𝜌 and the water level
in the respective head 𝐻

𝑐𝑖 =
1

2

√︀
𝑔′𝐻 =

1

2

√︃
𝑔

∆𝜌

𝜌
𝐻 ≈ 1

2

√︃
𝑔0.8

∆𝑆

𝜌𝐹𝑆

𝐻 (3.13)

The difference in density can be approximated as 0.8 times the difference in salinity (in 𝑘𝑔/𝑚3) between the lock and
the approach harbor. For 𝜌 a value could be deduced from both sides of the lock head at time of opening. Using a fixed
value based on the boundary conditions (the average density over the lock 𝜌𝐹𝑆) introduces only a small approximation
error.

With this density current velocity, 𝑇𝐿𝐸 can be defined as:

𝑇𝐿𝐸 =
2𝐿

𝑐𝑖
=

4𝐿√︁
𝑔 0.8Δ𝑆

𝜌𝐹𝑆
𝐻

(3.14)

The presence of sills and levels difference on the bottom of the lock chamber can influence the lock exchange. In this
case, the values for the length, volume and water level depth will need to be adjusted.

Bubble screens

The effectiveness of a bubble screen is often expressed as a factor on the velocity of the density current 𝜂. This density-
current factor is a number in the interval [0, 1], the more effective a bubble screen the lower this value is (with a limit
of about 0.2 - 0.25). With the velocity of the density current decreasing, the time it takes for a complete lock exchange
increases. The factor can then be easily introduced in equation (3.12) describing the amount of volume exchanged due
to lock exchange:

𝑉𝑈 = 𝑉𝐿𝑈 = 𝑉𝐿 tanh

(︂
𝜂𝑇𝑜𝑝𝑒𝑛

𝑇𝐿𝐸

)︂
(3.15)

3.2. Processes and definitions 41

libzsf

Note: This way of introducing 𝜂 is elegant, but does imply that the only the velocity of the density current is changed,
and e.g. the salinity of the density current is not. In reality the bubble screen will cause a lot of mixing to occur, and
therewith the salinities of lock exchange to change.

3.2.6 Flushing discharge

A flushing discharge always goes from the fresh to the salt side. Such a discharge would generally only be possible in
case of low-tide. In the high-tide case, a pump would be needed, and therefore the flushing discharge at high tide is
often zero in practice. From an operational standpoint, there is a certain maximum instantaneous discharge. This is the
discharge that is acceptable for the safe and speedy entry and exit of ships from the lock chamber. This momentaneous
value (to be distinguished from the cycle-averaged discharge) is input by the user, with separate values for LT and HT.

𝐿𝑇 : 𝑄𝑓𝑙𝑢𝑠ℎ = 𝑄𝑓𝑙𝑢𝑠ℎ,𝐿𝑇 (3.16)

𝐻𝑇 : 𝑄𝑓𝑙𝑢𝑠ℎ = 𝑄𝑓𝑙𝑢𝑠ℎ,𝐻𝑇 (3.17)

In many cases there is only a discharge when either lock head is open. It is also possible to flush with both lock heads
closed, but the leveling system still open. For now, we will assume the latter does not happen. That assumption then
leads to the following equation for the flushed volume:

𝑉𝑓𝑙𝑢𝑠ℎ = 𝑄𝑓𝑙𝑢𝑠ℎ (𝑇𝑜𝑝𝑒𝑛,𝐹 + 𝑇𝑜𝑝𝑒𝑛,𝑆) (3.18)

In practice, flushing is temporarily stopped when ships are sailing in from the fresh side to let them safely moor. This
distinction cannot be made in the ZSF, so flushing will happen for the entire door-open time.

The flushing discharge interacts with the density current and ships. For now, we will neglect the interaction of the
flushing discharge and density current with the ships. In other words, in the discussion below, we will assume that the
lock chamber does not contain any ships.

Generally we can assume a simple superposition of velocities when considering the interaction between flushing and
lock exchange. This has consequences for the maximum exchangeable volume by the density current, which will
discussed below in more detail using four scenario’s. These scenario’s differ in the magnitude of the flushing velocity
(relative to the velocity of the density current):

1. No flushing discharge

2. Velocity of the flushing discharge is lower than that of the density current: 𝑣𝑓𝑙𝑢𝑠ℎ = 0.5 · 𝑐𝑖
3. Velocity of the flushing discharge is equal to that of the density current: 𝑣𝑓𝑙𝑢𝑠ℎ = 𝑐𝑖

4. Velocity of the flushing discharge is larger than that of the density current: 𝑣𝑓𝑙𝑢𝑠ℎ = 1.5 · 𝑐𝑖
For every scenario we consider the entering (density) current, the reflecting, and the steady state condition at (infinitely)
long door-open times.

Because the interaction between the flushing discharge and density current differs for the fresh side and salt side, they
are discussed separately.

42 Chapter 3. Theory

libzsf

Flushing fresh side

Entering current

Fig. 3: Schematic overview of the entering density current as a function of the flushing discharge

In Scenario 1 the lock exchange is displayed for when there is no flushing discharge, as described in Section 3.2.5. The
water that is exchange between the lock and the fresh approach harbor can be fully attributed to the density current.

In Scenario 2 is visible what happens when there is a flushing discharge with a velocity lower than that of the density
current. The water from the lock chamber that enters the approach harbor can only get there because of the density
current / lock exchange process. There is an equally large contribution of lock exchange in the lock chamber itself, but
another part of the fresh water that has entered is due to the flushing discharge. In case of a flushing velocity of 0.5 · 𝑐𝑖
the ratio is 2/3 flushing discharge, and 1/3 lock exchange.

In Scenario 3 and 4 is visible what happens when the flushing velocity equals or exceeds the velocity of the density
current. In these cases, the density current cannot exit the lock chamber, and as such we can say that no lock exchange
has happened. The volume-averaged salinity of the lock chamber dropping can then be entirely attributed to the flushing
discharge.

3.2. Processes and definitions 43

libzsf

Reflecting current

Fig. 4: Schematic overview of the reflecting density current as a function of the flushing discharge

When there is flushing discharge as in Scenario 1, the pace of the fresh water displacing salt water in the lock chamber
after reflection is equal to that of an entering current. This holds when we assume velocities as shown in the figure
above. In Section 3.2.5 a hyperbolic-tangent approach was used, which implies that the velocity of the density current
slowly (but steadily) decreases.

In Scenario 2 is visible what happens when there would a flushing discharge. For an entering density current the water
that goes to the salt side still has a salinity of 𝑆𝐿. That has now turned into water with salinity 𝑆𝐹 This means that
the pace of the lock chamber’s salinity dropping in this phase scales with the velocity of the exiting density current,
because all incoming flushing discharge with salinity 𝑆𝐹 will pass right through the lock chamber and exit to the salt
side. Contrary to Scenario 1, that means that the pace of the lock chamber’s salinity dropping suddenly changes when
the density current reflects. After reflection, the lock chamber becomes fresh slower than for an entering density current.

For Scenario 3 we extrapolate from Scenario 2, and therefore assume that the water leaving the lock chamber on the
salt-side head has a salinity of that of the fresh side. For Scenario 4, a mixture of fresh water and water from the lock
chamber exits to the salt side. As such, the salinity of the water going to the salt side is somewhere between these two.

44 Chapter 3. Theory

libzsf

Final (steady) state

Fig. 5: Schematic overview of the final state of the lock chamber as a function of the flushing discharge

In the hypothetical case that the door is opened infinitely long, the final state in the lock chamber is often a fully fresh
one. Only for Scenario 3 there would still be a salt bottom layer present. This is because, based on superposition of
velocities alone, this layer never moves. In reality, mixing on the boundary layer between salt and fresh will slowly
erode this bottom layer, such that also in this case a fully fresh lock chamber results.

Simplifications and formulation

In previous sections was discussed how the entering and reflecting density current behave if we assume a superposition
of velocities. In Section 3.2.5 the lock exchange with flushing discharge is already written down in mathematical
relations. Whereas a single formulation could cover all defined scenario’s for the entering density current, that is no
longer possible when also having to take the reflecting density current or final state into account. There would be an
abrupt change in the pace with which the lock chamber’s salinity drops, and also an abrupt change in the salinity of
the flushing water going to the salt side. Furthermore, in the above discussion mixing/erosion has not been taken into
account, even though those would occur in reality.

To come to a simple formulation, we make the following assumptions:

• The final state is always a fully fresh lock chamber (like in Scenario 1, 2 and 4). With this assumption we are
closer to reality than would be the case based on superposition of velocities alone.

3.2. Processes and definitions 45

libzsf

• The initial pace of salinity change in the lock (for an entering density current) scales with the ratio with the flush-
ing velocity. This pace is kept even when the density current reflects, and slowly goes to zero with a hyperbolic
tangent just like in Section 3.2.5.

• The pace of salinity change due to the flushing discharge is constant. In other words, the flushing water that
enters the lock has a salinity of that of the fresh side, and the flushing water that exits has a salinity equal to that
of the lock chamber when the doors opened. As soon as the lock is entirely fresh, flushing no longer has any
effect on the salinity of the lock chamber, and as such we assume that the salinity of the water going to the salt
side then switches to being equal to that of the fresh side (and equal to that of the lock chamber in that moment).

Written in equations, we see that the fraction of lock exchange in Scenario 2 scales linearly with the ratio of the flushing
velocity to the velocity of the density current, until the situation of Scenario 3 is reached:

𝑓𝐿𝐸,𝑓𝑙𝑢𝑠ℎ = 𝑚𝑎𝑥

(︂
𝑐𝑖 − 𝑣𝑓𝑙𝑢𝑠ℎ

𝑐𝑖
, 0

)︂
(3.19)

This leads to the following equation for the exchanged volume due to lock exchange (with 𝑉𝑈 as defined in Section
3.2.5):

𝑉𝑈,𝐹 = 𝑓𝐿𝐸,𝑓𝑙𝑢𝑠ℎ𝑉𝑈 (3.20)

With these simplifications the lock becomes fresher quicker than in reality, but there is also less salt going to the fresh
side. How conservative or optimistic this formulation then is (and with that the salt/fresh load), is unknown. This is
also mentioned as a point of attention in Section TODO.

For Scenario 2, 3 and 4 it holds that flushing displaces the following volume:

𝑉𝑓𝑙𝑢𝑠ℎ = 𝑄𝑓𝑙𝑢𝑠ℎ𝑇𝑜𝑝𝑒𝑛,𝐹 (3.21)

The salinity of the flushing discharge is always 𝑆𝐹 over the fresh-side head. The salinity of the flushing discharge over
the salt-side head is initially 𝑆𝐿, switching to 𝑆𝐹 as soon as the lock is fully fresh. In Scenario 3 and 4, where contrary
to Scenario 1 and 2 there is no contribution of the lock exchange to the salinity decrease, this switch happens as soon
as 𝑉𝑓𝑙𝑢𝑠ℎ is equal to 𝑉𝐿.

Flushing salt side

When flushing with the door on the salt side opened, fresh water is entering the lock chamber from the fresh side.
Two extremes of that situation are shown in the figure below. In reality, the distribution of the fresh water will be
somewhere inbetween the extremes shown. In addition, the boundary between the fresh water and the saltier water in
the lock chamber will not be as sharp due to mixing. As such, the water that goes to the the salt side will become fresh
before the lock exchange process is done.

In the discussion of the entering and reflecting density current below we neglect the effect the dilution of the lock
chamber has on the velocity of said density current.

Entering current

In Scenario 1 in the figure above the situation is shown for a density current with no flushing discharge. The water
that is exchanged between the lock chamber and the salt approach harbor can be fully attributed to the density current,
traversing with velocity 𝑐𝑖.

In Scenario 2 is visible what happens when one flushes with a velocity lower than that of the density current. The salty
approach water that moves across the opened door into the lock chamber can only get there due to the lock exchange
process / density current. An equal amount of water from the lock chamber exits to the approach harbor by way of the
density current. The remainder of the lock chamber water that exits the lock is due to the flushing discharge. An equal

46 Chapter 3. Theory

libzsf

Fig. 6: Schematic overview of fresh flushing water entering the lock when salt-side door is open

Fig. 7: Schematic overview of the entering density current as a function of the flushing discharge

3.2. Processes and definitions 47

libzsf

amount of fresh water enters the lock from the lake side through the closed doors. That means the salinity in the lock
is both increasing (near the sea side) and decreasing (near the fresh side).

In Scenario 3 and 4 is visible what happens when the velocity of the flushing discharge equals or surpasses that of the
density current. In this case, the density current is not able to enter the lock, and as such we can say that there is no lock
exchange taking place. There is however a dilution of the lock chamber, which can be fully attributed to the flushing
discharge.

Reflecting current

Fig. 8: Schematic overview of the reflecting density current as a function of the flushing discharge

When there is no flushing discharge, the pace of salinization of the lock chamber is equal to that of an entering current,
if we assume the velocities as shown in the figure above. In Section 3.2.5 an approach with a hyperbolic tangent is
described, which would mean that the pace of salinization would slowly but steadily drop.

In Scenario 2 is visible what happens when a flushing discharge is present. The salt wedge still enters with the same
velocity, but exiting wedge (top layer) should exit more quickly because it cannot take up the full (half) height.

In Scenario 3 and 4 the density current does not enter the lock. In reality the density current will slowly start to enter
the lock in Scenario 3, because the lock chamber is diluting and with that the driving density difference increases. The
salinity of the water that leaves the lock to the salt approach harbor in this phase is likely somewhere between that of
the initial salinity of the lock chamber, and that of the fresh side.

48 Chapter 3. Theory

libzsf

Final (steady) state

Fig. 9: Schematic overview of the final state of the lock chamber as a function of the flushing discharge

When the door on the sea side is open infinitely long, the equilibrium situation is dependent on the velocity of the
flushing discharge.

In Scenario 1 the lock chamber will have acquired a salinity equal to that of the salt side.

In Scenario 2 a certain equilibrium between the driving salinity difference and flushing discharge is obtained. Shown
in the figure above we assume a sharp interface between the salt bottom layer and the fresh layer of flushing discharge.
In reality, instabilities on this interface will cause mixing, and this in turn will influence the lock exchange.

In Scenario 3 and 4 the lock chamber becomes fully fresh. A nuance is that the driving salinity difference does increase
with the lock chamber diluting, and with that a density current might start to enter the lock chamber eventually anyway.
That would then lead to an equilibrium state more equal to that of Scenario 2.

3.2. Processes and definitions 49

libzsf

Simplifications and formulation

In previous sections was discussed how the entering and reflecting density current behave if we assume a superposition
of velocities. In Section 3.2.5 the lock exchange with flushing discharge is already written down in mathematical
relations. Contrary to the discussion of the fresh side, there is now a clear distinction between the final steady state in
Scenario 1 and 2 (lock chamber fully or just partially salinized), and Scenario 3 and 4 (lock chamber diluted to salinity
of fresh side). The formulation that is derived should therefore also make a distinction between these two.

Just like in the discussion for the fresh side, it is difficult to describe the transition from entering to reflecting density
current. This is further complicated by the slow dilution of the lock chamber with fresh water, where it is not known
how and where this water mixes with that of the lock chamber (i.e. does the fresh water float to the top, or does the
entire lock chamber dilute more uniformly).

To come to a simple formulation, we make the following assumptions:

• The height of the top layer that forms in Scenario 2 is a function of the density difference between the salt side
and the fresh side, and the flushing discharge. The higher the flushing discharge the thicker this layer of fresh
water in the lock chamber. The higher the density difference, the thinner this layer is.

• In Scenario 1 and 2 we use the behavior as discussed in Section 3.2.5, where the pace of the lock exchange
steadily decreases. The initial velocity of the density current is 𝑐𝑖 − 𝑣𝑓𝑙𝑢𝑠ℎ, and the maximum volume that can
be exchanged is only part of the volume of the lock chamber (as discussed in the previous assumption). That is,
the maximum exchangeable volume is 𝑉𝐿 − 𝑉𝑡𝑜𝑝−𝑙𝑎𝑦𝑒𝑟.

• In Scenario 3 and 4 the lock chamber the salt density current will never enter the lock chamber. The pace of
dilution due to the flushing discharge is assumed constant. In other words, the water that enters the lock has a
salinity of that of the fresh side, and the water that exits has a salinity equal to the initial (at time of opening of
the doors) salinity of the lock chamber. As soon as the lock chamber has been fully diluted, the salinity of the
water that exits switches to that of the fresh side (equal to the lock chamber at that point in time).

For Scenario 1 we can then use the formulation of Section 3.2.5 as-is, or the below formulation for Scenario 2 with
the height of the top layer equal to zero. For Scenario 2 it holds that we can solve for the thickness of the top layer by
rewriting (3.13), and setting 𝑐𝑖 equal to the velocity of the water in the top layer 𝑣𝑡𝑜𝑝−𝑙𝑎𝑦𝑒𝑟.

𝐻𝑒𝑞 = 0.5
(2 · 𝑣𝑡𝑜𝑝−𝑙𝑎𝑦𝑒𝑟)

2 · 𝜌𝐹𝑆

𝑔 · 0.8 (𝑆𝑆 − 𝑆𝐹)
(3.22)

𝑣𝑡𝑜𝑝−𝑙𝑎𝑦𝑒𝑟 =
𝑄𝑓𝑙𝑢𝑠ℎ

𝐻𝑒𝑞 ·𝑊𝐿
(3.23)

To make the process of rewriting easier to understand, we merge all fixed terms into one constant:

𝐶 =
𝜌𝐹𝑆

𝑔 · 0.8 (𝑆𝑆 − 𝑆𝐹)
(3.24)

We can then write 𝐻𝑒𝑞 as a function of itself:

𝐻𝑒𝑞 = 2
𝑄2

𝑓𝑙𝑢𝑠ℎ

𝐻2
𝑒𝑞𝑊

2
𝐿

· 𝐶 (3.25)

The last step is to make this height explicit:

𝐻𝑒𝑞 =

(︃
2 ·

𝑄2
𝑓𝑙𝑢𝑠ℎ

𝑊 2
𝐿

· 𝐶

)︃ 1
3

(3.26)

With that, the maximum volume that can be exchanged by the density current then is:

𝑓𝐿𝐸,𝑓𝑙𝑢𝑠ℎ =
𝐻𝑆 −𝐻𝑒𝑞

𝐻𝑆
(3.27)

50 Chapter 3. Theory

libzsf

The time 𝑇𝐿𝐸 that it takes to exchange this volume is defined as follows:

𝑇𝐿𝐸,𝑆 =
2 · 𝑓𝐿𝐸,𝑓𝑙𝑢𝑠ℎ · 𝐿𝐿

𝜂𝑐𝑖 − 𝑣𝑓𝑙𝑢𝑠ℎ
(3.28)

This leads to the following equation for the exchanged volume by the density current:

𝑉𝑈,𝑆 = 𝑓𝐿𝐸,𝑓𝑙𝑢𝑠ℎ𝑉𝐿,𝑆 tanh

(︂
𝑇𝑜𝑝𝑒𝑛

𝑇𝐿𝐸,𝑆

)︂
(3.29)

For Scenario 2 - 4 it holds that the flushing discharge displaces the following volume:

𝑉𝑓𝑙𝑢𝑠ℎ = 𝑄𝑓𝑙𝑢𝑠ℎ𝑇𝑜𝑝𝑒𝑛,𝑆 (3.30)

The salinity of this discharge is always 𝑆𝐹 over the fresh-side head, i.e. when it enters the lock chamber. For the
sea-side lock head, the salinity is initially 𝑆𝐿, switching to 𝑆𝐹 as soon as the lock has been fully diluted. In Scenario 3
and 4, where contrary to Scenario 1 and 2 there is no salinization of the lock chamber, this switch in salinity happens
as soon as 𝑉𝑓𝑙𝑢𝑠ℎ is equal to 𝑉𝐿.

3.2.7 Overview of the input

Boundary conditions (only in stand-alone version):

ℎ𝐹 , ℎ𝑆 , 𝑆𝐹 , 𝑆𝑆 , 𝑇𝐹 , 𝑇𝑆

Of these, especially ℎ𝑆 will be a time-dependent variable to study the influence of a tide.

Geometry (not taking into account sills and an uneven lock bottom):

Constant in time: 𝐿𝐿, 𝑊𝐿, 𝑧𝐿
Operation and shipping information:

𝑁𝑐𝑦𝑐𝑙𝑒𝑠, 𝑇𝑑𝑜𝑜𝑟, 𝑇𝑙𝑒𝑣𝑒𝑙, 𝑐𝑑𝑜𝑡, 𝐶𝐹/𝐴𝑣𝑔, 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝, 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛

Initially all values are constant in time. However, to describe fluctuations in the operation of the lock in
time (depending on how busy it is), and to describe variation in the direction of the overall shipping traffic,
𝑁𝑐𝑦𝑐𝑙𝑒𝑠, 𝐶𝐹/𝐴𝑣𝑔, 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝, 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛 should be time-dependent parameters.

Measures:

Constant in time: 𝜂, 𝑄𝑓𝑙𝑢𝑠ℎ,𝐿𝑇 , 𝑄𝑓𝑙𝑢𝑠ℎ,𝐻𝑇

3.3 Equations per locking phase

Below we discuss, per locking phase, the equations for the mass transport of salt, expressed in terms of volumes with
certain salinity. Eventually the transports over the entire locking cycle can then be determined by aggregating the
transports per phase.

Because we assume cyclic operation of the lock, the initial condition of the lock (e.g. salinity) are equal to the conditions
at the end of the cycle.

3.3. Equations per locking phase 51

libzsf

3.3.1 Phase 1: Leveling to fresh side

The leveling takes place on the fresh-side head. There are no transports over the sea-side head.

Fig. 10: Schematic overview of leveling to the fresh side during low and high tide

The salt transport due to leveling at low tide (LT) can be described as:

𝐿𝑇 : 𝑀𝐹,𝐿𝑇1 = 𝑉𝑙𝑒𝑣𝑒𝑙,𝐿𝑇𝑆𝐹 (3.31)

Similarly for high tide:

𝐻𝑇 : 𝑀𝐹,𝐻𝑇1 = −𝑉𝑙𝑒𝑣𝑒𝑙,𝐻𝑇𝑆𝐿,𝑆 (3.32)

By definition (see (3.10) and (3.11)) either 𝑉𝑙𝑒𝑣𝑒𝑙,𝐿𝑇 or 𝑉𝑙𝑒𝑣𝑒𝑙,𝐻𝑇 is zero, we can sum them up into one single equation:

𝑀𝐹,1 = 𝑉𝑙𝑒𝑣𝑒𝑙,𝐿𝑇𝑆𝐹 − 𝑉𝑙𝑒𝑣𝑒𝑙,𝐻𝑇𝑆𝐿,𝑆 (3.33)

When leveling at low tide, the average salinity of the water in lock chamber drops because fresh water is let in. To
calculate this new salinity, we have to take into account the water displacement of ships present in the lock chamber:

𝐿𝑇 : 𝑆𝐿,𝑆,𝐿𝑒𝑣 =
𝑆𝐿,𝑆 (𝑉𝐿,𝑆 − 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝) + 𝑆𝐹𝑉𝐿𝑒𝑣,𝐿𝑇

𝑉𝐿,𝐹 − 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝
(3.34)

In the situation around high tide, water is extracted from the lock chamber to lower the level, which does not change
the salinity of the lock chamber:

𝐻𝑇 : 𝑆𝐿,𝐹,𝐿𝑒𝑣 = 𝑆𝐿,𝑆 (3.35)

With this, we can write (3.33) as follows:

𝑀𝐹,1 = 𝑉𝑙𝑒𝑣𝑒𝑙,𝐿𝑇𝑆𝐹 − 𝑉𝑙𝑒𝑣𝑒𝑙,𝐻𝑇𝑆𝐿,𝑆,𝐿𝑒𝑣 (3.36)

(The salinity in the lock chamber after Phase 1, 𝑆𝐿,𝑆,𝐿𝑒𝑣 can also be written as 𝑆𝐿,1.)

The phase-averaged discharges to and withdrawals from the fresh side are then as follows (note that there are no flows
on the salt side):

• withdrawal from the fresh side, with the prevailing salinity 𝑆𝐹 :

𝑉 −
𝐹,1 = 𝑉𝐿𝑒𝑣,𝐿𝑇 (3.37)

𝑄−
𝐹,1 =

𝑉 −
𝐹,1

𝑇𝐿𝑒𝑣

(3.38)

• discharge to the fresh side with salinity 𝑆𝐿,𝑆 :

𝑉 +
𝐹,1 = 𝑉𝐿𝑒𝑣,𝐻𝑇 (3.39)

𝑄+
𝐹,1 =

𝑉 +
𝐹,1

𝑇𝐿𝑒𝑣

(3.40)

52 Chapter 3. Theory

libzsf

3.3.2 Phase 2: Door open on fresh side

The figure below illustrates that in principle there are no differences between low tide and high tide. In case of flushing
through the lock, there is also a transport over the sea-side head.

Fig. 11: Schematic overview of flows when door is open on the fresh side during low and high tide

While the doors are open on one side there are various processes that take place that contribute to the transport of salt
over the opened lock head. These processes are:

1. Salt transport due to ships exiting the lock chamber

2. Salt transports due to the lock exchange (with or without flushing)

3. Salt transport due to ships entering the lock chamber

If the transports due to these processes are independently calculated before adding them up, there is a possibility of the
salt transport being too high. This would result in a salinity in the lock chamber that is lower than the fresh side, or
higher than the salt side. To prevent this from happening, Phase 2 has been divided into three subphases, corresponding
to the list above. Each of these subphases leads to a new intermediate salinity of the lock chamber:

1: Salt transport due to ships exiting the lock

𝑀𝐹,2𝑎 = 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝𝑆𝐹 (3.41)

𝑆𝐿,2𝑎 =
𝑆𝐿,𝑆,𝐿𝑒𝑣 (𝑉𝐿,𝐹 − 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝) + 𝑀𝐹,2𝑎

𝑉𝐿,𝐹
(3.42)

2. Salt transport due to lock exchange (with or without flushing)

Contribution of lock exchange:

𝑀𝐹,2𝑏,𝐿𝐸 = 𝑉𝑈,𝐹𝑆𝐹 − 𝑉𝑈,𝐹𝑆𝐿,2𝑎 (3.43)

With 𝑉𝑈,𝐹 as determined in (3.20).

Contribution of flushing over fresh-side head:

𝑉𝑓𝑙𝑢𝑠ℎ = 𝑄𝑓𝑙𝑢𝑠ℎ𝑇𝑜𝑝𝑒𝑛,𝐹 (3.44)

𝑀𝐹,2𝑏,𝑓𝑙𝑢𝑠ℎ = 𝑉𝑓𝑙𝑢𝑠ℎ𝑆𝐹 (3.45)

Contribution of flushing over the salt-side head. When flushing for such a long time that the lock chamber’s salinity
reaches that of the fresh side, the salinity of the water going to the sea side changes accordingly:

𝑉𝑓𝑙𝑢𝑠ℎ,𝑚𝑎𝑥 = 𝑉𝐿,𝐹 − 𝑉𝑈,𝐹 (3.46)

𝑀𝑆,2𝑏,𝑓𝑙𝑢𝑠ℎ = 𝑚𝑖𝑛 (𝑉𝑓𝑙𝑢𝑠ℎ, 𝑉𝑓𝑙𝑢𝑠ℎ,𝑚𝑎𝑥)𝑆𝐿,2𝑎 + 𝑚𝑎𝑥 (𝑉𝑓𝑙𝑢𝑠ℎ − 𝑉𝑓𝑙𝑢𝑠ℎ,𝑚𝑎𝑥, 0)𝑆𝐹 (3.47)

The new salinity at the end of this subphase then is:

𝑆𝐿,2𝑏 =
𝑆𝐿,2𝑎𝑉𝐿,𝐹 + 𝑀𝐹,2𝑏,𝐿𝐸 + 𝑀𝐹,2𝑏,𝑓𝑙𝑢𝑠ℎ −𝑀𝑍,2𝑏,𝑓𝑙𝑢𝑠ℎ

𝑉𝐿,𝐹
(3.48)

3. Salt transport due to ships entering the lock

𝑀𝐹,2𝑐 = −𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛𝑆𝐿,2𝑏 (3.49)

3.3. Equations per locking phase 53

libzsf

3.3.3 Phase 2: Total transports

The total transport of salt over the fresh-side head in this Phase is the sum of the transports of each subphase:

𝑀𝐹,2 = 𝑀𝐹,2𝑎 + 𝑀𝐹,2𝑏,𝑓𝑙𝑢𝑠ℎ + 𝑀𝐹,2𝑏,𝐿𝐸 + 𝑀𝐹,2𝑐 (3.50)

In case of a non-zero flushing discharge, there is also a transport over the salt-side head:

𝑀𝑆,2 = 𝑀𝑆,2𝑏,𝑓𝑙𝑢𝑠ℎ (3.51)

The resulting salinity in the lock is then:

𝑆𝐿,𝐹 =
𝑆𝐿,𝑆,𝐿𝑒𝑣 (𝑉𝐿,𝐹 − 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝) + 𝑀𝑀,2 −𝑀𝑆,2

(𝑉𝐿,𝐹 − 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛)
(3.52)

(The salinity in the lock after Phase 2, 𝑆𝐿,𝐹 , can also be written as 𝑆𝐿,2.)

The phase-averaged discharges to and withdrawals from the fresh and salt side are then as follows:

• withdrawal from the fresh side, with the prevailing salinity 𝑆𝐹 :

𝑉 −
𝐹,2 = 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝 + 𝑉𝑈,𝐹 + 𝑉𝑓𝑙𝑢𝑠ℎ (3.53)

𝑄−
𝐹,2 =

𝑉 −
𝐹,2

𝑇𝑜𝑝𝑒𝑛,𝐹

(3.54)

• discharge to the fresh side with salinity 𝑆+
𝐹,2:

𝑉 +
𝐹,2 = 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛 + 𝑉𝑈,𝐹 (3.55)

𝑄+
𝐹,2 =

𝑉 +
𝐹,2

𝑇𝑜𝑝𝑒𝑛,𝐹

(3.56)

𝑆+
𝐹,2 = −

𝑀𝐹,2 − 𝑉 −
𝐹,2 · 𝑆𝐹

𝑉 +
𝐹,2

(3.57)

• there is no withdrawal from the salt side in this Phase

• discharge to the salt side with average salinity 𝑆+
𝑆

𝑉 +
𝑆,2 = 𝑄𝑓𝑙𝑢𝑠ℎ𝑇𝑜𝑝𝑒𝑛,𝐹 (3.58)

𝑄+
𝑆,2 = 𝑄𝑓𝑙𝑢𝑠ℎ (3.59)

𝑆+
𝑆,2 =

𝑀𝑆,2

𝑉 +
𝑆,2

(3.60)

3.3.4 Phase 3: Leveling to salt side

The leveling takes place on the sea-side head. There are no transports over the fresh-side head.

Just like in Phase LT 1 and HT 1 it holds that by definition either 𝑉𝑙𝑒𝑣𝑒𝑙,𝐿𝑇 or 𝑉𝑙𝑒𝑣𝑒𝑙,𝐻𝑇 is zero. Therefore we can sum
the equations for both tidal phases up into a single one:

𝑀𝐹,3 = 𝑉𝑙𝑒𝑣𝑒𝑙,𝐿𝑇𝑆𝐿,𝐹 − 𝑉𝑙𝑒𝑣𝑒𝑙,𝐻𝑇𝑆𝑆 (3.61)

In the situation around low tide, water is extracted from the lock chamber to lower the level, which does not change the
salinity of the lock chamber:

𝐿𝑇 : 𝑆𝐿,𝐹,𝐿𝑒𝑣 = 𝑆𝐿,𝐹 (3.62)

54 Chapter 3. Theory

libzsf

Fig. 12: Schematic overview of leveling to the salt side during low and high tide

When leveling at high tide, the average salinity of the water in lock chamber rises because salt water is let in. To
calculate this new salinity, we have to take into account the water displacement of ships present in the lock chamber:

𝐻𝑇 : 𝑆𝐿,𝐹,𝐿𝑒𝑣 =
𝑆𝐿,𝐹 (𝑉𝐿,𝐹 − 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛) + 𝑆𝑆𝑉𝐿𝑒𝑣,𝐻𝑇

𝑉𝐿,𝑆 − 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛
(3.63)

With this, we can write (3.61) as follows:

𝑀𝑆,3 = 𝑉𝑙𝑒𝑣𝑒𝑙,𝐿𝑇𝑆𝐿,𝐹,𝐿𝑒𝑣 − 𝑉𝑙𝑒𝑣𝑒𝑙,𝐻𝑇𝑆𝑆 (3.64)

(The salinity in the lock chamber after Phase 3, 𝑆𝐿,𝐹,𝐿𝑒𝑣 can also be written as 𝑆𝐿,3.)

The phase-averaged discharges to and withdrawals from the salt side are then as follows (note that there are no flows
on the fresh side):

• withdrawal from the salt side, with the prevailing salinity 𝑆𝑆 :

𝑉 −
𝑆,3 = 𝑉𝐿𝑒𝑣,𝐻𝑇 (3.65)

𝑄−
𝑆,3 =

𝑉 −
𝑆,3

𝑇𝐿𝑒𝑣

(3.66)

• discharge to the salt side with salinity 𝑆𝐿,𝐹 :

𝑉 +
𝑆,3 = 𝑉𝐿𝑒𝑣,𝐿𝑇 (3.67)

𝑄+
𝑆,3 =

𝑉 +
𝑆,3

𝑇𝐿𝑒𝑣

(3.68)

3.3.5 Phase 4: Door open on salt side

The figure below illustrates that in principle there are no differences between low tide and high tide. In case of flushing
through the lock, there is also a transport over the fresh-side head.

Fig. 13: Schematic overview of flows when door is open on the salt side during low and high tide

While the doors are open on one side there are various processes that take place that contribute to the transport of salt
over the opened lock head. These processes are:

1. Salt transport due to ships exiting the lock chamber

3.3. Equations per locking phase 55

libzsf

2. Salt transports due to the lock exchange (with or without flushing)

3. Salt transport due to ships entering the lock chamber

If the transports due to these processes are independently calculated before adding them up, there is a possibility of
the salt transport being too high. This would result in a salinity in the lock chamber that is lower than the fresh side,
or higher than the salt side. To prevent this from happening, Phase 4 (just like Phase 2) has been divided into three
subphases, corresponding to the list above. Each of these subphases leads to a new intermediate salinity of the lock
chamber:

1: Salt transport due to ships exiting the lock

𝑀𝑆,4𝑎 = −𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛𝑆𝑆 (3.69)

𝑆𝐿,4𝑎 =
𝑆𝐿,𝐹,𝐿𝑒𝑣 (𝑉𝐿,𝑆 − 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛) + 𝑀𝑆,4𝑎

𝑉𝐿,𝑆
(3.70)

2. Salt transport due to lock exchange (with or without flushing)

Contribution of lock exchange:

𝑀𝑆,4𝑏,𝐿𝐸 = 𝑉𝑈,𝑆𝑆𝐿,4𝑎 − 𝑉𝑈,𝑆𝑆𝑆 (3.71)

With 𝑉𝑈,𝑆 as determined in (3.29).

Contribution of flushing over fresh-side head:

𝑉𝑓𝑙𝑢𝑠ℎ = 𝑄𝑓𝑙𝑢𝑠ℎ𝑇𝑜𝑝𝑒𝑛,𝑆 (3.72)

𝑀𝐹,4𝑏,𝑓𝑙𝑢𝑠ℎ = 𝑉𝑓𝑙𝑢𝑠ℎ𝑆𝐹 (3.73)

Contribution of flushing over the salt-side head. When flushing for a long, an equilibrium situation arises as described
in Section 3.2.6. Furthermore, the salinity of the flushing discharge going to the salt side changes from that of the
(initial salinity of the) lock chamber to that of the fresh side.

𝑉𝑓𝑙𝑢𝑠ℎ,𝑚𝑎𝑥 = 𝑉𝐿,𝑆 − 𝑉𝑈,𝑆 (3.74)

𝑀𝑆,4𝑏,𝑓𝑙𝑢𝑠ℎ = 𝑚𝑖𝑛 (𝑉𝑓𝑙𝑢𝑠ℎ, 𝑉𝑓𝑙𝑢𝑠ℎ,𝑚𝑎𝑥)𝑆𝐿,4𝑎 + 𝑚𝑎𝑥 (𝑉𝑓𝑙𝑢𝑠ℎ − 𝑉𝑓𝑙𝑢𝑠ℎ,𝑚𝑎𝑥, 0)𝑆𝐹 (3.75)

The new salinity at the end of this subphase then is:

𝑆𝐿,4𝑏 =
𝑆𝐿,4𝑎𝑉𝐿,𝑆 + 𝑀𝑆,4𝑏,𝐿𝐸 + 𝑀𝐹,4𝑏,𝑓𝑙𝑢𝑠ℎ −𝑀𝑍,4𝑏,𝑓𝑙𝑢𝑠ℎ

𝑉𝐿,𝑆
(3.76)

3. Salt transport due to ships entering the lock

𝑀𝑆,4𝑐 = 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝𝑆𝐿,4𝑏 (3.77)

3.3.6 Phase 4: Total transports

The total transport of salt over the salt-side head in this Phase is the sum of the transports of each subphase:

𝑀𝑆,4 = 𝑀𝑆,4𝑎 + 𝑀𝑆,4𝑏,𝑓𝑙𝑢𝑠ℎ + 𝑀𝑆,4𝑏,𝐿𝐸 + 𝑀𝑆,4𝑐 (3.78)

In case of a non-zero flushing discharge, there is also a transport over the fresh-side head:

𝑀𝐹,4 = 𝑀𝐹,4𝑏,𝑓𝑙𝑢𝑠ℎ (3.79)

56 Chapter 3. Theory

libzsf

The resulting salinity in the lock is then:

𝑆𝐿,𝑆 =
𝑆𝐿,𝐹,𝐿𝑒𝑣 (𝑉𝐿,𝑆 − 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛) + 𝑀𝑀,4 −𝑀𝑆,4

(𝑉𝐿,𝑆 − 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝)
(3.80)

(The salinity in the lock after Phase 4, 𝑆𝐿,𝑆 , can also be written as 𝑆𝐿,4.)

The phase-averaged discharges to and withdrawals from the fresh and salt side are then as follows:

• withdrawal from the salt side, with the prevailing salinity 𝑆𝑆 :

𝑉 −
𝑆,4 = 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛 + 𝑉𝑈,𝑆 (3.81)

𝑄−
𝑆,4 =

𝑉 −
𝑆,4

𝑇𝑜𝑝𝑒𝑛,𝑆

(3.82)

• discharge to the salt side with salinity 𝑆+
𝑆,4:

𝑉 +
𝑆,4 = 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝 + 𝑉𝑈,𝑆 + 𝑉𝑓𝑙𝑢𝑠ℎ (3.83)

𝑄+
𝑆,4 =

𝑉 +
𝑆,4

𝑇𝑜𝑝𝑒𝑛,𝑆

(3.84)

𝑆+
𝑆,4 =

𝑀𝑆,4 − 𝑉 −
𝑆,4 · 𝑆𝑆

𝑉 +
𝑆,4

(3.85)

• withdrawal from the fresh side, with the prevailing salinity 𝑆𝐹 :

𝑉 −
𝐹,4 = 𝑄𝑓𝑙𝑢𝑠ℎ𝑇𝑜𝑝𝑒𝑛,𝑆 (3.86)

𝑄−
𝐹,4 = 𝑄𝑓𝑙𝑢𝑠ℎ (3.87)

• there is no discharge to the lake side in this Phase

3.4 Cycle-averaged flows and salinities

Based on the volumes per locking cycle we now can, for each of the locking heads, determine the total transported
volumes with their corresponding salinities. From these volumes the cycle-averaged flows can be determined.

3.4.1 Fresh side

The combined equation for the fresh side gives the total transport of the entire locking cycle. This equation is as follows:

𝑀𝐹 = 𝑀𝐹,1 + 𝑀𝐹,2 + 𝑀𝐹,4 (3.88)

Aside from that we have information about the amount of water that is withdrawn from the fresh side

𝑉 −
𝐹 = 𝑉𝐿𝑒𝑣𝑒𝑙,𝐿𝑇 + 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝 + 𝑉𝑈,𝐹 + 𝑄𝑓𝑙𝑢𝑠ℎ · 2 · 𝑇𝑜𝑝𝑒𝑛 (3.89)

and the volume that is discharged to the fresh side

𝑉 +
𝐹 = 𝑉𝐿𝑒𝑣𝑒𝑙,𝐻𝑇 + 𝑉𝑈,𝐹 + 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛 (3.90)

By dividing both volumes by the time spent on a total locking cycle, we can determine the cycle-averaged flows. Each
of these flows has a corresponding discharge, and can be connected to cells in a far-field model as a discharge or
withdrawal:

3.4. Cycle-averaged flows and salinities 57

libzsf

• Withdrawal from the fresh side, with the prevailing salinity 𝑆𝐹 :

𝑄−
𝐹 =

𝑉 −
𝐹

𝑇𝑐𝑦𝑐𝑙𝑒
(3.91)

• Discharge to the fresh side with a to-be-determined average salinity:

𝑄+
𝐹 =

𝑉 +
𝐹

𝑇𝑐𝑦𝑐𝑙𝑒
;𝑆 = 𝑆+

𝐹 (3.92)

The average salinity for the water discharged to the fresh side is determined from the mass and volume transports:

𝑆+
𝐹 = −

(︀
𝑀𝐹 − 𝑉 −

𝐹 𝑆𝐹

)︀
𝑉 +
𝐹

(3.93)

In case of stand-alone application, but also to compare with other locks or salt intrusion measure configurations, it can
be useful to express the salt transport as a mass flux:

𝑀̇𝐹 =
𝑀𝐹

𝑇𝑐𝑦𝑐𝑙𝑒
(3.94)

3.4.2 Salt side

The combined equation for the salt side is:

𝑀𝑆 = 𝑀𝑆,2 + 𝑀𝑆,3 + 𝑀𝑆,4 (3.95)

Again, we can write down the volumes going to and from the salt side. For the withdrawal that is:

𝑉 −
𝑆 = 𝑉𝐿𝑒𝑣𝑒𝑙,𝐻𝑇 + 𝑉𝑆ℎ𝑖𝑝,𝐷𝑜𝑤𝑛 + 𝑉𝑈,𝑆,𝐹 𝑙𝑢𝑠ℎ (3.96)

and the volume that is discharged to the salt side

𝑉 +
𝑆 = 𝑉𝐿𝑒𝑣𝑒𝑙,𝐿𝑇 + 𝑉𝑈,𝑆,𝐹 𝑙𝑢𝑠ℎ + 𝑉𝑆ℎ𝑖𝑝,𝑈𝑝 + 𝑄𝑓𝑙𝑢𝑠ℎ · 2 · 𝑇𝑜𝑝𝑒𝑛 (3.97)

By dividing both volumes by the time spent on a total locking cycle, we can determine the cycle-averaged flows. Each
of these flows has a corresponding discharge, and can be connected to cells in a far-field model as a discharge or
withdrawal:

• Withdrawal from the salt side, with the prevailing salinity 𝑆𝑆 :

𝑄−
𝑆 =

𝑉 −
𝑆

𝑇𝑐𝑦𝑐𝑙𝑒
(3.98)

• Discharge to the salt side with a to-be-determined average salinity:

𝑄+
𝑆 =

𝑉 +
𝑆

𝑇𝑐𝑦𝑐𝑙𝑒
;𝑆 = 𝑆+

𝑆 (3.99)

The average salinity for the water discharged to the salt side is determined from the mass and volume transports:

𝑆+
𝑆 =

(︀
𝑀𝑆 − 𝑉 −

𝑆 𝑆𝑆

)︀
𝑉 +
𝑆

(3.100)

In case of stand-alone application, but also to compare with other locks or salt intrusion measure configurations, it can
be useful to express the salt transport as a mass flux:

𝑀̇𝑆 =
𝑀𝑆

𝑇𝑐𝑦𝑐𝑙𝑒
(3.101)

For an equilibrium state, with the lock operating with constant operation for long periods of time, it obviously holds
that

𝑀̇𝑆 = 𝑀̇𝐹 (3.102)

58 Chapter 3. Theory

libzsf

3.5 Numerical approach cycle-averaged values

The description in Chapter Equations per locking phase of how the transports and how the salinity in the lock chamber
changes from phase to phase, also gives a recipe for calculating the cycle-averaged values of volumes and salinities.
Namely, we can iteratively calculate our way through the locking cycle until the calculated value no longer change
significantly. From these steady state values the cycle-averaged flows (discharges and withdrawals) can be determined,
together with the salinities (see Section 3.5.1).

An alternative approach is setting up a system of equations (see Section 3.5.2). From Chapter Equations per locking
phase and Cycle-averaged flows and salinities the essential equations can be selected, that together form a system of
equations with unknowns. Solving this system of equations than resolves the unknowns that are necessary to calculate
the cycle-averaged flows and salinities.

3.5.1 Iteratively calculating the locking cycle

In Chapter Cycle-averaged flows and salinities the expression for the flows (discharges and withdrawals) have been set
up, but a few unknowns remain. These values arise in the locking cycle, as described in Chapter Equations per locking
phase.

This cycle can then be considered iterative process: for fixed boundary conditions and after enough cycles, eventually
these unknowns will converge to their respective values. To enter this iterative process, e.g. starting at LT 1 / HT 1, we
only need an initial guess for the salinity of the lock chamber. Obviously this guess has to be higher than the salinity
of the fresh side, and lower than that of the salt side. A good starting point would then be the average of the salinities
of the boundary conditions.

In case of calculating through time for varying boundary conditions (e.g. a tide on the sea side, or a time-varying
operation of the lock), the converged lock chamber salinity of the previous time step can be chosen as the initial guess.
For slowly changing boundary conditions, the previous chamber salinity is a reasonable estimate. The closer the guess
to the eventual solution, the fewer iterations are needed to converge.

The numerical approach for determining cycle-averaged values then consists of two steps:

1. Iteratively determining the unknown values

2. Calculate the discharges 𝑄+
𝐹 with 𝑆+

𝐹 and 𝑄+
𝑆 with 𝑆+

𝑆 , and the withdrawals 𝑄−
𝐹 and 𝑄−

𝑆 .

3.5.2 System of equations

An alternative to the iterative approach as described above is setting up a system of equations in which the number
of equations is equal to the number of unknowns. From the previous chapters the relevant equations can be selected,
each with a number of unknowns. (The unknowns in this case are all values that cannot be directly calculated from the
boundary conditions or input). Not all equations are linear, so it is necessary to repeatedly solve a linearized system
of equations until convergence. In practice, this way of solving has very little advantage over calculating iteratively as
described in Iteratively calculating the locking cycle. We therefore do not elaborate further on this approach.

3.5. Numerical approach cycle-averaged values 59

libzsf

3.5.3 Overview of output

By the formulation the steady state values of the following quantities are calculated, all as function of time:

𝑀𝐹 , 𝑀̇𝐹 , 𝑄−
𝐹 , 𝑄+

𝐹 , 𝑆+
𝐹 , 𝑀𝑆 , 𝑀̇𝑆 , 𝑄−

𝑆 , 𝑄+
𝑆 , 𝑆+

𝑆

Getting to these parameters is what the formulation was designed for: the mass transports (per cycle) and the fluxes and
flows (cycle-averaged) that enter and exit the lock on both sides. Aside from that there are a few other parameters that
can help interpret the output. These can be geometric parameters, like the volume of the lock chamber, or operational
parameters like door-open times. It is also possible to export the cycle-averaged transports per locking phase.

Aside from that, a few other useful parameters can be determined. These parameters can help compare the ZSF to more
naive methods of determined the salt load, or with other theoretical or experimental relations.

Dimensionless salt transport

For the dimensionless salt transport over the lock per cycle, we use the parameter 𝑍𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛. This parameter is defined
as a factor on the lock chamber volume times the difference in salinity between the boundary conditions:

𝑀 = 𝑍𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑉𝐿 · ∆𝑆 (3.103)

As such, 𝑍𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 indicates what fraction of the lock chamber, in regular locking operation, exchanges and contributes
to the salt transport.

In the process of calculating transports we get transports for both lock heads. Aside from that, the volume of the lock
chamber, due to a difference in water level on both sides, is not always equal. Therefore, we have to use average values
for these quantities. From this, 𝑍𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 can be written as:

𝑍𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑀

𝑉𝐿 · (𝑆𝑆 − 𝑆𝐹)
=

0.5 · (𝑀𝐹 + 𝑀𝑆)

0.5 · (𝑉𝐿,𝐹 + 𝑉𝐿,𝑆) · (𝑆𝑆 − 𝑆𝐹)
(3.104)

Dimensionless door-open time

The dimensionless door-open time is 𝑇𝐿𝐸/𝑇𝑜𝑝𝑒𝑛. In the calculations the value of 𝑇𝐿𝐸 is determined per lock head,
with the prevailing salinity difference. With that, the value of 𝑇𝐿𝐸 is not a direct function of the input, but is dependent
on the calculations. To get to a 𝑇𝐿𝐸 that is only determined by input (boundary conditions and geometry), we define
a variant: 𝑇𝐿𝐸,𝐹𝑆 . This quantity is based solely on the salinity difference over the lock. This parameter is not used
in the calculations, but is sometimes used in determining auxiliary outputs, e.g. of the dimensionless door-open time
𝑇𝐿𝐸/𝑇𝑜𝑝𝑒𝑛:

𝑐𝑖,𝐹𝑆 =
1

2

√︁
𝑔′𝐻 =

1

2

√︃
𝑔

∆𝜌

𝜌
𝐻 ≈ 1

2

√︃
0.8 (𝑆𝑆 − 𝑆𝐹)

𝜌𝐹𝑆

(︂
𝐻𝐹 + 𝐻𝑆

2

)︂
(3.105)

𝑇𝐿𝐸,𝐹𝑆 =
2𝐿

𝑐𝑖,𝐹𝑆
(3.106)

60 Chapter 3. Theory

CHAPTER

FOUR

API

4.1 C API

4.1.1 Structures

Input

struct zsf_param_t
The parameter structure both for phase-wise calculation, and for steady state calculation.

double lock_length
The length of the lock in meters.

double lock_width
The width of the lock in meters.

double lock_bottom
The bottom of the lock in meters with respect to datum (e.g. mNAP).

double num_cycles
(Steady) The number of cycles (leveling from lake to sea and back again) the lock makes in a day.

double door_time_to_open
(Steady) The time it takes for the door to go from fully closed to fully (open in seconds.

double leveling_time
(Steady) The average time it takes to level the lock to the sea or lake level in seconds.

double calibration_coefficient
(Steady) The calibration coefficient on the time that the door is open.

double symmetry_coefficient
(Steady) The imbalance between the lake door and right door being open, should be in the range (0, 2). A
value of 1.0 means that the lake and sea side door are open equally long.

double ship_volume_sea_to_lake
The water displacement of ships going from the sea to the lake in 𝑚3.

double ship_volume_lake_to_sea
The water displacement of ships going from the sea to the lake in 𝑚3.

double salinity_lock
The (initial) salinity of the lock in 𝑘𝑔/𝑚3.

61

libzsf

double head_sea
The head of the sea in meters with respect to datum (e.g. mNAP).

double salinity_sea
The salinity of the sea in 𝑘𝑔/𝑚3.

double temperature_sea
The temperature of the sea in degrees Celcius.

double head_lake
The head of the lake in meters with respect to datum (e.g. mNAP).

double salinity_lake
The salinity of the lake in 𝑘𝑔/𝑚3.

double temperature_lake
The temperature of the lake in degrees Celcius.

double flushing_discharge_high_tide
The flushing discharge in 𝑚3/𝑠 when the sea level is higher than (or equal to) lake level.

double flushing_discharge_low_tide
The flushing discharge in 𝑚3/𝑠 when the lake level is strictly below the sea level.

double density_current_factor_sea
The factor by which to multiply the velocity of the density current on the sea side.

double density_current_factor_lake
The factor by which to multiply the velocity of the density current on the lake side.

double distance_door_bubble_screen_sea
Distance of the bubble screen on the lake side to the door in meters. Positive values mean that the screen
is outside the lock. Negative values mean that the screen is inside the lock.

double distance_door_bubble_screen_lake
Distance of the bubble screen on the lake side to the door in meters. Positive values mean that the screen
is outside the lock. Negative values mean that the screen is inside the lock.

double sill_height_sea
Sill height on the sea side in meters above the bottom of the lock.

double sill_height_lake
Sill height on the lake side in meters above the bottom of the lock.

double rtol
(Steady) The relative tolerance of the salinity in the lock after phase 4 to determine whether convergence
has been reached.

double atol
(Steady) The absolute tolerance of the salinity in the lock after phase 4 to determine whether convergence
has been reached.

62 Chapter 4. API

libzsf

Steady state output

These structures are output by zsf_calc_steady(). Note that zsf_aux_results_t is an optional output of this
function, and is not output/calculated by default.

struct zsf_results_t

For mass and salt transport the definition is such that positive values are in the direction lake → lock
→ sea. Negative values mean that there is a net withdrawal of salt from the sea or net salt load on the
lake.

double mass_transport_lake
The mass transport of salt over the lake head in 𝑘𝑔.

double salt_load_lake
The average salt transport to the lake 𝑘𝑔/𝑠.

double discharge_from_lake
The average discharge from the lake to the lock in 𝑚3/𝑠.

double discharge_to_lake
The average discharge from the lock to the lake in 𝑚3/𝑠.

double salinity_to_lake
The average salinity of the water going from the lock to the lake in 𝑘𝑔/𝑚3.

double mass_transport_sea
The mass transport of salt over the sea head in 𝑘𝑔/𝑚3.

double salt_load_sea
The average salt transport to the sea 𝑘𝑔/𝑠.

double discharge_from_sea
The average discharge from the sea to the lock in 𝑚3/𝑠.

double discharge_to_sea
The average discharge from the lock to the sea in 𝑚3/𝑠.

double salinity_to_sea
The average salinity of the water going from the lock to the sea in 𝑘𝑔/𝑚3.

struct zsf_aux_results_t
Additional results that can be calculated for steady state operation.

double z_fraction
The dimensionless salt transport per cycle. It is defined as a factor on the lock volume times the difference
in salinity between the lake and sea side.

𝑀 = 𝑍𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑉𝑙𝑜𝑐𝑘 · ∆𝑆

This way it represents what part of the lock, in the regular locking process, is exchanged by the density
current and contributes to the salt transport.

Because the salt transports are per head, and the volume of the lock is not always equal on sea and lake
side, average values are used for these.

𝑍𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑀

𝑉 𝑙𝑜𝑐𝑘 · (𝑆𝑠𝑒𝑎 − 𝑆𝑙𝑎𝑘𝑒)
=

0.5 · (𝑀𝑙𝑎𝑘𝑒 + 𝑀𝑠𝑒𝑎)

0.5 · (𝑉𝑙𝑜𝑐𝑘,𝑙𝑎𝑘𝑒 + 𝑉𝑙𝑜𝑐𝑘,𝑠𝑒𝑎) · (𝑆𝑠𝑒𝑎 − 𝑆𝑙𝑎𝑘𝑒)

4.1. C API 63

libzsf

double dimensionless_door_open_time
The dimensionless door open time is 𝑇𝐿𝐸/𝑇𝑜𝑝𝑒𝑛. In this calculation the value for 𝑇𝐿𝐸 is calculated per
lock head, with the corresponding salinity difference. That means that 𝑇𝐿𝐸 is not just a function of the
input, but is dependent on the calculation routines, and there are two values (one for each lock head). To
get to a single 𝑇𝐿𝐸 that is determined by the geometry and boundary conditions, we define a variant of
𝑇𝐿𝐸,𝑙𝑎𝑘𝑒−𝑠𝑒𝑎 based on the density difference over the lock.

𝑐𝑖,𝑙𝑎𝑘𝑒−𝑠𝑒𝑎 =
1

2

√︁
𝑔′𝐻 =

1

2

√︃
𝑔

∆𝜌

𝜌
𝐻 ≈ 1

2

√︃
𝑔

0.8 (𝑆𝑠𝑒𝑎 − 𝑆𝑙𝑎𝑘𝑒)

𝜌𝑙𝑎𝑘𝑒−𝑠𝑒𝑎

(︂
𝐻𝑙𝑎𝑘𝑒 + 𝐻𝑠𝑒𝑎

2

)︂

𝑇𝐿𝐸,𝑙𝑎𝑘𝑒−𝑠𝑒𝑎 =
2𝐿

𝑐𝑖,𝑙𝑎𝑘𝑒−𝑠𝑒𝑎

double volume_to_lake
The volume that is discharged to the lake per locking cycle in 𝑚3.

double volume_from_lake
The volume that is withdrawn from the lake per locking cycle in 𝑚3.

double volume_to_sea
The volume that is discharged to the sea per locking cycle in 𝑚3.

double volume_from_sea
The volume that is withdrawn from the sea per locking cycle in 𝑚3.

double volume_lock_at_lake
The volume of the lock when it is at sea level in 𝑚3.

double volume_lock_at_sea
The volume of the lock when it is at sea level in 𝑚3.

double t_cycle
The time it takes to complete one locking cycle in seconds.

double t_open
The average value of the door open time on the lake and sea side, i.e. the average of zsf_aux_results_t.
t_open_lake and zsf_aux_results_t.t_open_sea.

double t_open_lake
The time the door is open on the lake side per locking cycle in seconds.

double t_open_sea
The time the door is open on the sea side per locking cycle in seconds.

double salinity_lock_1
The salinity of the lock after phase 1 in 𝑘𝑔/𝑚3.

double salinity_lock_2
The salinity of the lock after phase 2 in 𝑘𝑔/𝑚3.

double salinity_lock_3
The salinity of the lock after phase 3 in 𝑘𝑔/𝑚3.

double salinity_lock_4
The salinity of the lock after phase 4 in 𝑘𝑔/𝑚3.

64 Chapter 4. API

libzsf

zsf_phase_transports_t transports_phase_1
The phase transports in phase 1. See zsf_phase_transports_t

zsf_phase_transports_t transports_phase_2
The phase transports in phase 2. See zsf_phase_transports_t

zsf_phase_transports_t transports_phase_3
The phase transports in phase 3. See zsf_phase_transports_t

zsf_phase_transports_t transports_phase_4
The phase transports in phase 4. See zsf_phase_transports_t

Phase-wise output

struct zsf_phase_state_t
The state of the lock. Note that some of these values are redundant, but it is faster to store them than recalculate
them every time.

double salinity_lock
The salinity of the water in the lock in 𝑘𝑔/𝑚3.

double saltmass_lock
The amount of salt in the lock in 𝑘𝑔.

double head_lock
The head of the lock in meters with respect to datum (e.g. mNAP).

double volume_ship_in_lock
The water displacement of a ship inside the lock in 𝑚3.

struct zsf_phase_transports_t
For mass and salt transport the definition is such that positive values are in the direction lake → lock → sea.
Negative values mean that there is a net withdrawal of salt from the sea or net salt load on the lake.

double mass_transport_lake
The mass transport of salt over the lake head in 𝑘𝑔.

double volume_from_lake
The volume of water that goes from the lake to the lock in 𝑚3.

double volume_to_lake
The volume of water that goes from the the lock to the lake in 𝑚3.

double discharge_from_lake
The average discharge of water going from the lake to the lock in 𝑚3/𝑠.

double discharge_to_lake
The average discharge of water going from the lock to the lake in 𝑚3/𝑠.

double salinity_to_lake
The average salinity of the water going from the lock to the lake in 𝑘𝑔/𝑚3.

double mass_transport_sea
The mass transport of salt over the sea head in 𝑘𝑔.

double volume_from_sea
The volume of water that goes from the sea to the lock in 𝑚3.

4.1. C API 65

libzsf

double volume_to_sea
The volume of water that goes from the the lock to the sea in 𝑚3.

double discharge_from_sea
The average discharge of water going from the sea to the lock in 𝑚3/𝑠.

double discharge_to_sea
The average discharge of water going from the lock to the sea in 𝑚3/𝑠.

double salinity_to_sea
The average salinity of the water going from the lock to the sea in 𝑘𝑔/𝑚3.

4.1.2 Functions

int zsf_initialize_state(const zsf_param_t *p, zsf_phase_state_t *state, double salinity_lock, double
head_lock)

Fill the state with an initial condition for an empty (no ships) lock.

int zsf_step_phase_1(const zsf_param_t *p, double t_level, zsf_phase_state_t *state, zsf_phase_transports_t
*results)

Perform step 1: leveling to lake side

int zsf_step_phase_2(const zsf_param_t *p, double t_open_lake, zsf_phase_state_t *state,
zsf_phase_transports_t *results)

Perform step 2: door open to lake side:

• Ships leaving the lock chamber

• Lock exchange with or without flushing

• Ships entering the lock chamber

int zsf_step_phase_3(const zsf_param_t *p, double t_level, zsf_phase_state_t *state, zsf_phase_transports_t
*results)

Perform step 3: leveling to sea side

int zsf_step_phase_4(const zsf_param_t *p, double t_open_sea, zsf_phase_state_t *state, zsf_phase_transports_t
*results)

Perform step 4: door open to sea side:

• Ships leaving the lock chamber

• Lock exchange with or without flushing

• Ships entering the lock chamber

int zsf_step_flush_doors_closed(const zsf_param_t *p, double t_flushing, zsf_phase_state_t *state,
zsf_phase_transports_t *results)

Flush the lock with the doors closed.

void zsf_param_default(zsf_param_t *p)
Fill a zsf_param_t with default values.

int zsf_calc_steady(const zsf_param_t *p, zsf_results_t *results, zsf_aux_results_t *aux_results)
Calculate the salt intrusion for a set of parameters, assuming steady operation.

66 Chapter 4. API

libzsf

const char *zsf_error_msg(int code)
Get error message corresponding to error code.

const char *zsf_version()
Get version string.

4.2 Python API

class pyzsf.ZSFUnsteady(sal_lock, head_lock, **parameters: float)
Bases: object

A class to calculate a lock in phase-wise fashion.

property state: Dict[str, float]

Get the state of the lock, see also zsf_phase_state_t.

Note that this is a read-only property, and any changes made to the dictionary returned by this property do
not persist.

step_flush_doors_closed(t_flushing: float, **parameters: float)→ Dict[str, float]
Open the door on sea side. See also zsf_step_flush_doors_closed() .

Parameters

• t_flushing – Duration of flushing is open in seconds.

• parameters – Any parameters that should be changed before performing this step. Note
that these changes persist.

Returns
The salt and water transports in this phase. See also zsf_phase_transports_t.

step_phase_1(t_level, **parameters: float)→ Dict[str, float]
Level the lock to lake side. See also zsf_step_phase_1() .

Parameters

• t_level – Duration of the leveling in seconds.

• parameters – Any parameters that should be changed before performing this step. Note
that these changes persist.

Returns
The salt and water transports in this phase. See also zsf_phase_transports_t.

step_phase_2(t_open_lake: float, **parameters: float)→ Dict[str, float]
Open the door on lake side. See also zsf_step_phase_2() .

Parameters

• t_open_lake – Duration the door is open in seconds.

• parameters – Any parameters that should be changed before performing this step. Note
that these changes persist.

Returns
The salt and water transports in this phase. See also zsf_phase_transports_t.

4.2. Python API 67

libzsf

step_phase_3(t_level, **parameters: float)→ Dict[str, float]
Level the lock to sea side. See also zsf_step_phase_3() .

Parameters

• t_level – Duration of the leveling in seconds.

• parameters – Any parameters that should be changed before performing this step. Note
that these changes persist.

Returns
The salt and water transports in this phase. See also zsf_phase_transports_t.

step_phase_4(t_open_sea: float, **parameters: float)→ Dict[str, float]
Open the door on sea side. See also zsf_step_phase_4() .

Parameters

• t_open_sea – Duration the door is open in seconds.

• parameters – Any parameters that should be changed before performing this step. Note
that these changes persist.

Returns
The salt and water transports in this phase. See also zsf_phase_transports_t.

pyzsf.zsf_calc_steady(auxiliary_results: bool = False, **parameters: float)→ Dict[str, float]
Calculate the salt intrusion for a set of parameters, assuming steady operation.

Parameters

• auxiliary_results – Whether or not to calculate and output auxiliary results. See
zsf_aux_results_t.

• kwargs – Any parameters that should be changed versus the default. See also zsf_param_t
for an overview of the parameters.

Returns
A dictionary containing the cycle averaged salt fluxes and discharges (see zsf_results_t).
Also outputs values in zsf_aux_results_t if auxiliary_results is True.

68 Chapter 4. API

CHAPTER

FIVE

SUPPORT

Raise any issue on GitLab such that we can address your problem.

69

https://gitlab.com/deltares/libzsf/issues

libzsf

70 Chapter 5. Support

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

71

libzsf

72 Chapter 6. Indices and tables

INDEX

S
state (pyzsf.ZSFUnsteady property), 67
step_flush_doors_closed() (pyzsf.ZSFUnsteady

method), 67
step_phase_1() (pyzsf.ZSFUnsteady method), 67
step_phase_2() (pyzsf.ZSFUnsteady method), 67
step_phase_3() (pyzsf.ZSFUnsteady method), 67
step_phase_4() (pyzsf.ZSFUnsteady method), 68

Z
zsf_aux_results_t (C struct), 63
zsf_aux_results_t.dimensionless_door_open_time

(C var), 63
zsf_aux_results_t.salinity_lock_1 (C var), 64
zsf_aux_results_t.salinity_lock_2 (C var), 64
zsf_aux_results_t.salinity_lock_3 (C var), 64
zsf_aux_results_t.salinity_lock_4 (C var), 64
zsf_aux_results_t.t_cycle (C var), 64
zsf_aux_results_t.t_open (C var), 64
zsf_aux_results_t.t_open_lake (C var), 64
zsf_aux_results_t.t_open_sea (C var), 64
zsf_aux_results_t.transports_phase_1 (C var),

64
zsf_aux_results_t.transports_phase_2 (C var),

65
zsf_aux_results_t.transports_phase_3 (C var),

65
zsf_aux_results_t.transports_phase_4 (C var),

65
zsf_aux_results_t.volume_from_lake (C var), 64
zsf_aux_results_t.volume_from_sea (C var), 64
zsf_aux_results_t.volume_lock_at_lake (C var),

64
zsf_aux_results_t.volume_lock_at_sea (C var),

64
zsf_aux_results_t.volume_to_lake (C var), 64
zsf_aux_results_t.volume_to_sea (C var), 64
zsf_aux_results_t.z_fraction (C var), 63
zsf_calc_steady (C function), 66
zsf_calc_steady() (in module pyzsf), 68
zsf_error_msg (C function), 66
zsf_initialize_state (C function), 66

zsf_param_default (C function), 66
zsf_param_t (C struct), 61
zsf_param_t.atol (C var), 62
zsf_param_t.calibration_coefficient (C var), 61
zsf_param_t.density_current_factor_lake (C

var), 62
zsf_param_t.density_current_factor_sea (C

var), 62
zsf_param_t.distance_door_bubble_screen_lake

(C var), 62
zsf_param_t.distance_door_bubble_screen_sea

(C var), 62
zsf_param_t.door_time_to_open (C var), 61
zsf_param_t.flushing_discharge_high_tide (C

var), 62
zsf_param_t.flushing_discharge_low_tide (C

var), 62
zsf_param_t.head_lake (C var), 62
zsf_param_t.head_sea (C var), 61
zsf_param_t.leveling_time (C var), 61
zsf_param_t.lock_bottom (C var), 61
zsf_param_t.lock_length (C var), 61
zsf_param_t.lock_width (C var), 61
zsf_param_t.num_cycles (C var), 61
zsf_param_t.rtol (C var), 62
zsf_param_t.salinity_lake (C var), 62
zsf_param_t.salinity_lock (C var), 61
zsf_param_t.salinity_sea (C var), 62
zsf_param_t.ship_volume_lake_to_sea (C var), 61
zsf_param_t.ship_volume_sea_to_lake (C var), 61
zsf_param_t.sill_height_lake (C var), 62
zsf_param_t.sill_height_sea (C var), 62
zsf_param_t.symmetry_coefficient (C var), 61
zsf_param_t.temperature_lake (C var), 62
zsf_param_t.temperature_sea (C var), 62
zsf_phase_state_t (C struct), 65
zsf_phase_state_t.head_lock (C var), 65
zsf_phase_state_t.salinity_lock (C var), 65
zsf_phase_state_t.saltmass_lock (C var), 65
zsf_phase_state_t.volume_ship_in_lock (C var),

65
zsf_phase_transports_t (C struct), 65

73

libzsf

zsf_phase_transports_t.discharge_from_lake
(C var), 65

zsf_phase_transports_t.discharge_from_sea (C
var), 66

zsf_phase_transports_t.discharge_to_lake (C
var), 65

zsf_phase_transports_t.discharge_to_sea (C
var), 66

zsf_phase_transports_t.mass_transport_lake
(C var), 65

zsf_phase_transports_t.mass_transport_sea (C
var), 65

zsf_phase_transports_t.salinity_to_lake (C
var), 65

zsf_phase_transports_t.salinity_to_sea (C
var), 66

zsf_phase_transports_t.volume_from_lake (C
var), 65

zsf_phase_transports_t.volume_from_sea (C
var), 65

zsf_phase_transports_t.volume_to_lake (C var),
65

zsf_phase_transports_t.volume_to_sea (C var),
65

zsf_results_t (C struct), 63
zsf_results_t.discharge_from_lake (C var), 63
zsf_results_t.discharge_from_sea (C var), 63
zsf_results_t.discharge_to_lake (C var), 63
zsf_results_t.discharge_to_sea (C var), 63
zsf_results_t.mass_transport_lake (C var), 63
zsf_results_t.mass_transport_sea (C var), 63
zsf_results_t.salinity_to_lake (C var), 63
zsf_results_t.salinity_to_sea (C var), 63
zsf_results_t.salt_load_lake (C var), 63
zsf_results_t.salt_load_sea (C var), 63
zsf_step_flush_doors_closed (C function), 66
zsf_step_phase_1 (C function), 66
zsf_step_phase_2 (C function), 66
zsf_step_phase_3 (C function), 66
zsf_step_phase_4 (C function), 66
zsf_version (C function), 67
ZSFUnsteady (class in pyzsf), 67

74 Index

	Getting Started
	Excel workbook
	Troubleshooting

	Python package
	C library
	Fortran interface
	From Source

	Examples
	Excel Examples
	Steady-state calculation
	Overview
	Properties of the lock and its operation
	Salt load without measures
	Comparing salt intrusion measures

	Phase-wise calculation
	Overview
	Different phases and routines
	Initializing the lock
	Leveling to the lake side
	Opening the door to the lake side
	Leveling to the sea side
	Opening the door to the sea side
	Calculating more lockages

	Python Examples
	Steady-state calculation
	Overview
	Properties of the lock and its operation
	Salt load without measures
	Comparing salt intrusion measures
	The whole script

	Phase-wise calculation
	Overview
	Initializing the lock
	Leveling to the lake side
	Opening the door to the lake side
	Leveling to the sea side
	Opening the door to the sea side
	Calculating more lockages
	The whole script

	Phase-wise with multiple lockages
	Overview
	Initializing the lock
	Reading the input data
	Stepping through all lockages
	Aggregating output
	The whole script

	Theory
	Introduction
	Motivation and goals
	Approach

	Processes and definitions
	Processes in the locking cycle
	Leveling
	Lock exchange
	Locking operation
	Shipping
	Measures to prevent salt intrusion
	Bubble screens
	Flushing through the lock chamber

	Conventions
	Phases of the locking cycle
	Physical quantities
	Boundary conditions
	Geometry
	Operation
	Transports

	Calculation of the transported volumes
	Leveling volume
	Lock exchange
	Bubble screens

	Flushing discharge
	Flushing fresh side
	Entering current
	Reflecting current
	Final (steady) state
	Simplifications and formulation

	Flushing salt side
	Entering current
	Reflecting current
	Final (steady) state
	Simplifications and formulation

	Overview of the input

	Equations per locking phase
	Phase 1: Leveling to fresh side
	Phase 2: Door open on fresh side
	Phase 2: Total transports
	Phase 3: Leveling to salt side
	Phase 4: Door open on salt side
	Phase 4: Total transports

	Cycle-averaged flows and salinities
	Fresh side
	Salt side

	Numerical approach cycle-averaged values
	Iteratively calculating the locking cycle
	System of equations
	Overview of output
	Dimensionless salt transport
	Dimensionless door-open time

	API
	C API
	Structures
	Input
	Steady state output
	Phase-wise output

	Functions

	Python API

	Support
	Indices and tables
	Index

